Introductory Course Mathematics

PD Dr. Olaf Schnürer

University of St. Gallen

Fall semester 2025

Topics during the semester

- Basics on functions of one real variable I: Functions, absolute value, inequalities, summation sign
- Basics on functions of one real variable I: Power functions, exponential and logarithmic functions, trigonometric functions
- 3 Basics on functions of one real variable II: Rules of differentiation
- Basics on functions of one real variable II: Derivatives and properties of functions (monotonicity, extrema)
- Partial derivatives (used in the course on macroeconomics)
- 6 Algebra: Linear, quadratic and exponential equations

Break

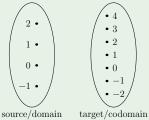
- Analytical geometry: Visualization of functions in two variables, contour lines, general concepts
- Analytical geometry: Contour lines, curves of second order (ellipse, parabola, hyperbola)
- Optimization of functions of two real variables under constraints
- Systems of equations (linear and non-linear), systems of inequalities
- Ombinatorics the art of counting
- Basics of linear algebra (coordinate systems, vectors, distances and angles, lines and planes)

Overview

- Functions
- Absolute value
- Inequalities
- ullet Summation sign \sum

Functions

Example (of a function)



Consider two finite sets: $X = \{-1, 0, 1, 2\}$ and $Y = \{-2, -1, 0, 1, 2, 3, 4\}$

Notation:

$$f: X \to Y$$

read: "f from X to Y"

$$x\mapsto f(x)=x^2$$

"x is mapped to $f(x) = x^2$ "

 $_{\text{nain}} \text{ Short notation: } f(x) = x^2$

Definition (function = mapping)

A function or mapping f from a set X to a set Y is a rule that assigns

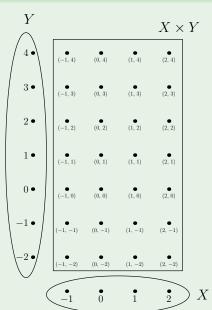
- to each element x of the set X
- exactly one element f(x) of the set Y.

Terminology:

- *X* is the **domain** or **source** of *f*;
- Y is the **codomain** or **target** of f;

- f(x) is the image/value of x under f;
- $f(X) = \{f(x) \mid x \in X\}$ is the **range** or **image** of f.

Example (graph of a function)



For every element $x \in X = \{-1,0,1,2\}$, mark the point $(x,f(x)) = (x,x^2)$ in the product $X \times Y$. The set of points obtained in this way is the **graph** of f. It is our main tool to visualize functions.

Let's pass from finite sets to infinite sets. We still consider the "squaring function" but change domain and target. We take the set $\mathbb R$ of all reals numbers as domain and target, i. e. we consider the following function:

$$f: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto y = f(x) = x^2$

Its graph is the parabola $y = x^2$.

$$graph(f) = \{(x, x^2) \mid x \in \mathbb{R}\} \subset \mathbb{R} \times \mathbb{R} = \mathbb{R}^2$$

Definition (composition of functions)

Assume that f and g are functions such that the target of f is equal to (or contained in) the source of g:

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

Then we define a new function from X to Z, called the **composition** of g and f and denoted by $g \circ f$ (read "g after f"), by

$$(g \circ f)(x) = g(f(x))$$
 for arbitrary $x \in X$

Note that the function g is applied after applying f (even though g comes before f in the expression $g \circ f$).

Example

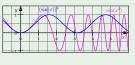
defined

The function $h(x) = \sin(x^2)$ is the composition of the sine function $g(x) = \sin(x)$ and the squaring function $f(x) = x^2$ because $(g \circ f)(x) = g(f(x)) = g(x^2) = \sin(x^2) = h(x)$.

$$\mathbb{R} \xrightarrow{f} \mathbb{R} \xrightarrow{g=\sin} \mathbb{R}$$

$$\xrightarrow{h=g \circ f=\sin \circ f} \mathbb{R}$$

Note that the order matters: The composition $f \circ g$ is given by $f(g(x)) = f(\sin(x)) = (\sin(x))^2$ which is not equal to $h(x) = \sin(x^2)$. Here, \mathbb{R} is source and target of f and g, so $g \circ f$ makes sense. In general, $f \circ g$ may not even be



Inverse function

Motivation

Let a function $f: X \to Y$ be given.

Question: Can we go back and compute x from y = f(x)?

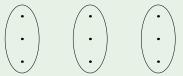
More precisely: Is there a function $g: Y \to X$ reversing/undoing/inverting f in the sense that the composition $g \circ f$ maps each element of X to itself, i. e.

$$(g \circ f)(x) = g(f(x)) = x \text{ for all } x \in X$$
?

Example (with finite sets)

Bad setting (g does not exist):

Good setting (g does exist):



- A necessary condition for the existence of g is that different elements of X are mapped to different elements of Y. A function with this property is called injective.
- Moreover, it would be nice if any element $y \in Y$ would be in the image of f, so that there is at least one natural candidate for g(y). A function with this property is called **surjective**.

Important properties of functions

Definition (injective, surjective, bijective functions)

A function $f: X \to Y$ is

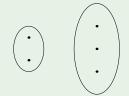
- injective if f(x₁) = f(x₂) implies x₁ = x₂ for all elements x₁, x₂ ∈ X.
 Equivalently: x₁ ≠ x₂ implies f(x₁) ≠ f(x₂) for all elements x₁, x₂ ∈ X.
 In words: Distinct elements of the domain are mapped to distinct elements of the target. Each element of the target is the image of at most one element of the domain.
- surjective if for every element $y \in Y$ there is an element $x \in X$ with f(x) = y. In words: Every element of the target is the image of an element of the domain.
- bijective if it is surjective and injective.
 In words: For each element y ∈ Y there is a unique element x ∈ X with f(x) = y.

Examples with finite sets

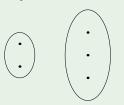
Examples

injective function:

 $x_1 \neq x_2$ implies $f(x_1) \neq f(x_2)$



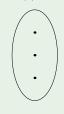
non-injective function:



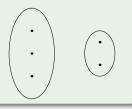
Examples

surjective function:

for any $y \in Y$ there is an $x \in X$ with f(x) = y



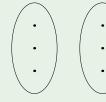
non-surjective function:



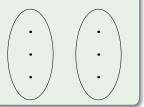
Examples

bijective function:

for any $y \in Y$ there is a unique $x \in X$ with f(x) = y



non-bijective function:



Example

Consider some people attending a theater performance.

Let X be the set of people and Y be the set of seats in the theater.

Let $f: X \to Y$ be the function/mapping that maps a person to its seat.

- f injective means: The audience is happy: No two people sit on the same seat.
- f surjective means: The theater manager is happy: The performance is sold out ... but there might be several seats being occupied by more than one person.
- f bijective means: Audience and theater manager are happy.

Let $f: X \to Y$ be a function between subsets of \mathbb{R} . Then

- ullet f is injective if and only if every horizontal line through Y hits the graph at most once.
- \bullet f is surjective if and only if every horizontal line through a point of Y hits the graph.
- f is bijective if and only if every horizontal line through a point of Y hits the graph precisely once.

Example

The function

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto y = f(x) = x^2$$

• is not injective: f(-1) = f(1).

more generally, f(-a) = f(a) for any $a \neq 0$

ullet is not surjective: $-1 \in \mathbb{R}$ is not in the image;

no negative number in image

Replacing the source by $[0,\infty)$, we obtain an injective function

Replacing the target by the image $f(\mathbb{R}) = [0, \infty)$, we obtain a surjective function

$$f: [0, \infty) \to \mathbb{R}$$

 $x \mapsto x^2$

$$f\colon \mathbb{R}\to [0,\infty)$$
$$x\mapsto x^2$$

For any function $f: X \to Y$ between arbitrary sets, replacing the target Y by the image f(X) always yields a *surjective* function $f: X \to f(X)$.

$$f: [0, \infty) \to [0, \infty)$$

 $x \mapsto x^2$

Theorem (inverse function)

Let $f: X \to Y$ be a **bijective** function. Then it makes sense to define a function $f^{-1}: Y \to X$ by

$$f^{-1}(y) = (the unique element x \in X with f(x) = y)$$

This function has the following two properties:

•
$$f^{-1}(f(x)) = x$$
 for all $x \in X$ Proof: $f^{-1}(f(x)) = ($ the unique element $x' \in X$ with $f(x') = f(x)) = x$

•
$$f(f^{-1}(y)) = y$$
 for all $y \in Y$ Proof: $f(f^{-1}(y)) = f$ (the unique element $x \in X$ with $f(x) = y$) = x

In words: f^{-1} reverts/inverts f and vice-versa.

The function f^{-1} is called the inverse function or the inverse of f.

Note:
$$f(x) = y \iff x = f^{-1}(y)$$

for all $x \in X$ and $y \in Y$.

Examples

$$f(x) = x + 3 \qquad \qquad f^{-1}(y) = y - 3 \qquad \qquad \text{why? } y = x + 3 \iff x = y - 3$$

$$f(x) = 3x \qquad \qquad f^{-1}(y) = \frac{1}{3}y$$

$$f(x) = x^2 \qquad \qquad f^{-1}(y) = \sqrt{y} \qquad \qquad \text{as functions } [0, \infty) \xrightarrow{f} [0, \infty) \xrightarrow{f^{-1}} [0, \infty)$$

$$f(x) = x^3 \qquad \qquad f^{-1}(y) = \sqrt[3]{y} \qquad \qquad \text{as functions } [0, \infty) \xrightarrow{f} [0, \infty) \xrightarrow{f^{-1}} [0, \infty)$$

$$f(x) = e^x = \exp(x) \qquad \qquad f^{-1}(y) = \ln(y) \qquad \qquad \text{as functions } \mathbb{R} \xrightarrow{f} [0, \infty) \xrightarrow{f^{-1}} \mathbb{R}$$

Example (standard method for finding the inverse function)

For many functions given by algebraic formulas there is a standard way to find the inverse function (if it exists).

Consider for example the function $f(x) = \frac{x+3}{x-2}$. Then, by definition,

$$f^{-1}(y) = ($$
the hopefully unique element $x \in X$ with $f(x) = y)$

This means that we should try to solve the following equation for x.

$$f(x) = \frac{x+3}{x-2} = y$$

$$x+3 = (x-2)y$$

$$x+3 = xy-2y$$

$$x-xy = -2y-3$$

$$x(1-y) = -2y-3$$

$$x = \frac{-2y-3}{1-y} = \frac{2y+3}{y-1}$$

This computation shows that for any $y \in \mathbb{R} \setminus \{1\}$, there is precisely one $x \in \mathbb{R} \setminus \{2\}$ satisfying f(x) = y.

Therefore, our original function

$$f: \mathbb{R} \setminus \{2\} \to \mathbb{R} \setminus \{1\}, \quad f(x) = \frac{x+3}{x-2}$$

is bijective with inverse function

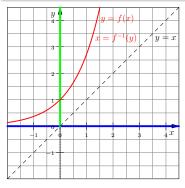
$$x = \frac{-2y - 3}{1 - y} = \frac{2y + 3}{y - 1} \qquad f^{-1} \colon \mathbb{R} \setminus \{1\} \to \mathbb{R} \setminus \{2\}, \quad f^{-1}(y) = \frac{2y + 3}{y - 1}.$$

All these equations are equivalent as long as $x \neq 2$ and $y \neq 1$.

Note

Let $f: X \to Y$ be a **bijective** function between subsets of \mathbb{R} .

Then the graph of f^{-1} is the reflection of the graph of f across the line x = y.



As an example, we consider the bijective exponential function

$$f: \mathbb{R} \to (0, \infty)$$

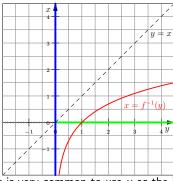
 $x \mapsto y = f(x) = e^x$

The red curve is the graph of f.

The red curve is also the graph of f^{-1} if we view y as the independent variable.

Since we are used to depict the independent variable horizontally, we reflect the whole picture (including domain and target) across the line x=y.

The result is on the next slide.



The red curve is the graph of the inverse function

$$f^{-1}: (0, \infty) \to \mathbb{R}$$

 $y \mapsto x = f^{-1}(y) = \ln(y)$

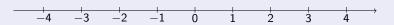
It is very common to use x as the independent variable and y as the dependent variable. This is achieved by swapping x and y. The inverse function is then denoted as follows.

$$f^{-1}$$
: $(0, \infty) \to \mathbb{R}$
 $x \mapsto y = f^{-1}(x) = \ln(x)$

To be consistent with the picture, all x and y there must be swapped as well.

Definition (absolute value)

The absolute value |x| of a real number $x \in \mathbb{R}$ is its distance from the origin on the number line.



The formal definition is

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{otherwise} \end{cases}$$

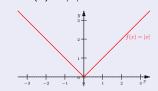
Examples

$$|5| = 5$$

 $|-7| = -(-7) = 7$
 $|0| = 0$

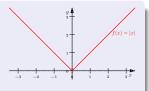
Omit the minus sign if x is negative!

The graph of the absolute value function f(x) = |x|.



Properties of the absolute value

- "bounded from below", $|x| \ge 0$: The absolute value is always non-negative (= never negative).
- "symmetric with respect to the y-axis": |x| = |-x|.



- growth properties:
 - On the "negative x-axis including zero" (= the interval $(-\infty,0]$), the absolute value function is strictly decreasing.
 - P On the "positive x-axis including zero" (= the interval $[0,\infty)$), the absolute value function is strictly increasing.

For all $x, y \in \mathbb{R}$ and $a \ge 0$ we have:

• The condition $|x| \le a$ is equivalent to $-a \le x \le a$.

- The condition $a \le |x|$ is equivalent to $x \le -a$ or $a \le x$.
- $|x \cdot y| = |x| \cdot |y|$
- $\bullet \left| \frac{x}{y} \right| = \frac{|x|}{|y|}$

y ≠ 0

• $\sqrt{x^2} = |x|$

Note

Geometric point of view: |a - b| is the distance between a and b.

Example

Solve |x - 2| < 3.

Geometric point of view: The distance |x-2| between x and 2 should be smaller than 3, i. e. x should be in the interval $\mathbb{L} = (2-3,2+3) = (-1,5)$.



Formal way of solving: |x-2| < 3 is equivalent to -3 < x - 2 < 3, hence -1 < x < 5.

Example

Solve |x-5| = |x+3|. Geometric point of view:

- |x-5| is the distance between x and 5
- |x + 3| = |x (-3)| is the distance between x and -3

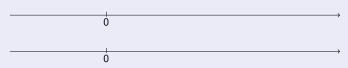
These two distances agree if and only if x is the midpoint of 5 and -3, i. e. $x = \frac{5+(-3)}{2} = 1$.

Properties of the absolute value: Triangle inequality

(Triangle inequality)

For all $x, y \in \mathbb{R}$ the following **triangle inequality** holds:

$$|x+y| \le |x| + |y|$$

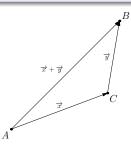


The name "triangle inequality" comes from geometry. Given any three points A, B, C in the plane, the direct route from A to B is shorter than or equal to the route via C. Using vectors as indicated in the picture, this means that

$$\left|\overrightarrow{x} + \overrightarrow{y}\right| \le \left|\overrightarrow{x}\right| + \left|\overrightarrow{y}\right|$$

In other words: In any triangle, any side is shorter than or equal to the sum of the other two sides.

In the one-dimensional setting considered above, all triangles are "degenerate" (= all points lie on a line).



Solving inequalities

When solving inequalities, the following steps do not change the solution set:

• adding/subtracting the same number/term on both sides of the inequality, e. g.

• multiplying/dividing both sides with/by a positive number/term, e. g.

$$15 < -3x \qquad \qquad |\cdot \frac{1}{3}, \text{ same as } : 3$$
 $\Rightarrow \qquad 5 < -x$

 multiplying/dividing both sides with/by a negative number/term and changing the orientation of the comparison sign, e. g.

$$5 < -x \qquad | \cdot (-1)$$

$$\Rightarrow \qquad -5 > x$$

Why? Multiplying by -1 is the **order-reversing** reflection of the number line in its origin (example: from -2 < 3 < 4 obtain 2 > -3 > -4).

$$\stackrel{\downarrow}{0}$$

• clearly: swapping both sides and changing the orientation of the comparison sign

$$\begin{array}{lll} -5 > x \\ & \Longrightarrow & x < -5 & \text{solution set is } \mathbb{L} = (-\infty, -5) \end{array}$$

Example

Solve $\frac{2x+7}{x+2} \ge 1$. When multiplying by x+2 you need to distinguish two cases!

• Case 1, condition x + 2 > 0:

$$2x + 7 \ge x + 2 \qquad |-x - 7|$$

$$\iff \qquad x \ge -5$$

Naively, one would think that the solution set is $\mathbb{L}_1 = [-5, \infty)$. But in case 1 we assume that x+2>0 or equivalently x>-2. Hence the solution set is $\mathbb{L}_1 = (-2, \infty) \cap [-5, \infty) = (-2, \infty)$.

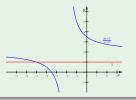
• Case 2, condition x + 2 < 0:

Now both x<-2 and $x\leq -5$ must be satisfied, hence $\mathbb{L}_2=(-\infty,-5].$

Result: The solution set of our inequality is

$$\mathbb{L}=\mathbb{L}_1\cup\mathbb{L}_2=(-2,\infty)\cup(-\infty,-5]=(-\infty,-5]\cup(-2,\infty)$$

This is precisely the set where the blue graph in the picture is above the red line.



Definition (Summation sign = Sigma notation = \sum notation)

Mathematicians use the symbol \sum , the capital greek letter sigma, in order to write sums of similar terms compactly. This is defined as

$$\sum_{i=m}^{n} a_{i} = a_{m} + a_{m+1} + a_{m+2} + \dots + a_{n-1} + a_{n}$$
read: "sum of a_{i} for i from m to n "

where

- *i* is the index of summation
- a_i is a term depending on i
- the integer *m* is the **lower bound of summation**
- the integer *n* is the **upper bound of summation**

The "i = m" under the symbol means that the index starts out equal to m. It is then incremented by one for each summand a_i , stopping when i = n. Here we assume that $m \le n$.

Example

$$\sum_{i=2}^{5} i^2 = 2^2 + 3^2 + 4^2 + 5^2$$

Examples

Sum of all natural numbers from 1 to 100:

(this sum is
$$\frac{100 \cdot 101}{2}$$
)

$$\sum_{i=1}^{100} i = 1 + 2 + 3 + \dots + 99 + 100$$

Sum of all even numbers from -4 to 100: (any variable can be the index of summation)

$$\sum_{j=-2}^{50} 2j = (-4) + (-2) + 0 + 2 + 4 + \dots + 96 + 98 + 100$$

Sum of all odd numbers from 1 to 101:

$$\sum_{k=0}^{50} (2k+1) = 1+3+5+\cdots+99+101 = \sum_{k=1}^{51} (2k-1)$$

Brackets are important:

(the operator \sum is performed before +, but after \cdot)

$$\sum_{k=0}^{50} 2k + 1 = \left(\sum_{k=0}^{50} 2k\right) + 1 = \left(0 + 2 + \dots + 98 + 100\right) + 1$$

Examples

The same sum can be written in many different forms:

$$\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \dots + \frac{99}{100} = \sum_{i=1}^{99} \frac{i}{i+1} = \sum_{i=2}^{100} \frac{i-1}{i} = \sum_{i=20}^{118} \frac{i-19}{i-18}$$

Index shifting: In order to see formally that the last \sum -expression coincides with the first one, we substitute i = j + 19 (index shift by 19):

Abstractly, the shift/substitution i = j + s is given by the formula

$$\sum_{i=m}^{n} a_i = \sum_{i=m-s}^{n-s} a_{j+s}$$