miniaufgabe.js ==== 5. Mai 2025 bis 9. Mai 2025 ==== === Montag 5. Mai 2025 === Lösen Sie folgende Logarithmusgleichung:miniAufgabe("#exoexpgleichungen6","#solexpgleichungen6", [["$\\log_{11}(x) = \\frac{3}{\\log_{2}(11)}$", "\\[ \\begin{align*} \\log_{11}(x) & = \\frac{3}{\\log_{2}(11)} && |\\text{LS Basiswechsel zu Basis 11}\\\\\n\\log_{11}(x) & = \\frac{3}{\\frac{\\log_{11}(11)}{\\log_{11}(2)}} && |\\text{TU}\\\\\n\\log_{11}(x) & = \\frac{3}{\\frac{1}{\\log_{11}(2)}} && |\\text{TU}\\\\\n\\log_{11}(x) & = 3\\log_{11}(2) && |\\text{TU}\\\\\n\\log_{11}(x) & = \\log_{11}\\left(2^{3}\\right) && |11^{(\\cdot)}\\\\\nx & = 2^{3} = 8\\\\\n\\end{align*} \\]\n"], ["$\\log_{11}(x) = \\frac{4}{\\log_{2}(11)}$", "\\[ \\begin{align*} \\log_{11}(x) & = \\frac{4}{\\log_{2}(11)} && |\\text{LS Basiswechsel zu Basis 11}\\\\\n\\log_{11}(x) & = \\frac{4}{\\frac{\\log_{11}(11)}{\\log_{11}(2)}} && |\\text{TU}\\\\\n\\log_{11}(x) & = \\frac{4}{\\frac{1}{\\log_{11}(2)}} && |\\text{TU}\\\\\n\\log_{11}(x) & = 4\\log_{11}(2) && |\\text{TU}\\\\\n\\log_{11}(x) & = \\log_{11}\\left(2^{4}\\right) && |11^{(\\cdot)}\\\\\nx & = 2^{4} = 16\\\\\n\\end{align*} \\]\n"], ["$\\log_{11}(x) = \\frac{5}{\\log_{2}(11)}$", "\\[ \\begin{align*} \\log_{11}(x) & = \\frac{5}{\\log_{2}(11)} && |\\text{LS Basiswechsel zu Basis 11}\\\\\n\\log_{11}(x) & = \\frac{5}{\\frac{\\log_{11}(11)}{\\log_{11}(2)}} && |\\text{TU}\\\\\n\\log_{11}(x) & = \\frac{5}{\\frac{1}{\\log_{11}(2)}} && |\\text{TU}\\\\\n\\log_{11}(x) & = 5\\log_{11}(2) && |\\text{TU}\\\\\n\\log_{11}(x) & = \\log_{11}\\left(2^{5}\\right) && |11^{(\\cdot)}\\\\\nx & = 2^{5} = 32\\\\\n\\end{align*} \\]\n"], ["$\\log_{11}(x) = \\frac{6}{\\log_{2}(11)}$", "\\[ \\begin{align*} \\log_{11}(x) & = \\frac{6}{\\log_{2}(11)} && |\\text{LS Basiswechsel zu Basis 11}\\\\\n\\log_{11}(x) & = \\frac{6}{\\frac{\\log_{11}(11)}{\\log_{11}(2)}} && |\\text{TU}\\\\\n\\log_{11}(x) & = \\frac{6}{\\frac{1}{\\log_{11}(2)}} && |\\text{TU}\\\\\n\\log_{11}(x) & = 6\\log_{11}(2) && |\\text{TU}\\\\\n\\log_{11}(x) & = \\log_{11}\\left(2^{6}\\right) && |11^{(\\cdot)}\\\\\nx & = 2^{6} = 64\\\\\n\\end{align*} \\]\n"], ["$\\log_{13}(x) = \\frac{7}{\\log_{2}(13)}$", "\\[ \\begin{align*} \\log_{13}(x) & = \\frac{7}{\\log_{2}(13)} && |\\text{LS Basiswechsel zu Basis 13}\\\\\n\\log_{13}(x) & = \\frac{7}{\\frac{\\log_{13}(13)}{\\log_{13}(2)}} && |\\text{TU}\\\\\n\\log_{13}(x) & = \\frac{7}{\\frac{1}{\\log_{13}(2)}} && |\\text{TU}\\\\\n\\log_{13}(x) & = 7\\log_{13}(2) && |\\text{TU}\\\\\n\\log_{13}(x) & = \\log_{13}\\left(2^{7}\\right) && |13^{(\\cdot)}\\\\\nx & = 2^{7} = 128\\\\\n\\end{align*} \\]\n"], ["$\\log_{7}(x) = \\frac{8}{\\log_{2}(7)}$", "\\[ \\begin{align*} \\log_{7}(x) & = \\frac{8}{\\log_{2}(7)} && |\\text{LS Basiswechsel zu Basis 7}\\\\\n\\log_{7}(x) & = \\frac{8}{\\frac{\\log_{7}(7)}{\\log_{7}(2)}} && |\\text{TU}\\\\\n\\log_{7}(x) & = \\frac{8}{\\frac{1}{\\log_{7}(2)}} && |\\text{TU}\\\\\n\\log_{7}(x) & = 8\\log_{7}(2) && |\\text{TU}\\\\\n\\log_{7}(x) & = \\log_{7}\\left(2^{8}\\right) && |7^{(\\cdot)}\\\\\nx & = 2^{8} = 256\\\\\n\\end{align*} \\]\n"], ["$\\log_{11}(x) = \\frac{9}{\\log_{2}(11)}$", "\\[ \\begin{align*} \\log_{11}(x) & = \\frac{9}{\\log_{2}(11)} && |\\text{LS Basiswechsel zu Basis 11}\\\\\n\\log_{11}(x) & = \\frac{9}{\\frac{\\log_{11}(11)}{\\log_{11}(2)}} && |\\text{TU}\\\\\n\\log_{11}(x) & = \\frac{9}{\\frac{1}{\\log_{11}(2)}} && |\\text{TU}\\\\\n\\log_{11}(x) & = 9\\log_{11}(2) && |\\text{TU}\\\\\n\\log_{11}(x) & = \\log_{11}\\left(2^{9}\\right) && |11^{(\\cdot)}\\\\\nx & = 2^{9} = 512\\\\\n\\end{align*} \\]\n"], ["$\\log_{13}(x) = \\frac{10}{\\log_{2}(13)}$", "\\[ \\begin{align*} \\log_{13}(x) & = \\frac{10}{\\log_{2}(13)} && |\\text{LS Basiswechsel zu Basis 13}\\\\\n\\log_{13}(x) & = \\frac{10}{\\frac{\\log_{13}(13)}{\\log_{13}(2)}} && |\\text{TU}\\\\\n\\log_{13}(x) & = \\frac{10}{\\frac{1}{\\log_{13}(2)}} && |\\text{TU}\\\\\n\\log_{13}(x) & = 10\\log_{13}(2) && |\\text{TU}\\\\\n\\log_{13}(x) & = \\log_{13}\\left(2^{10}\\right) && |13^{(\\cdot)}\\\\\nx & = 2^{10} = 1024\\\\\n\\end{align*} \\]\n"], ["$\\log_{7}(x) = \\frac{3}{\\log_{3}(7)}$", "\\[ \\begin{align*} \\log_{7}(x) & = \\frac{3}{\\log_{3}(7)} && |\\text{LS Basiswechsel zu Basis 7}\\\\\n\\log_{7}(x) & = \\frac{3}{\\frac{\\log_{7}(7)}{\\log_{7}(3)}} && |\\text{TU}\\\\\n\\log_{7}(x) & = \\frac{3}{\\frac{1}{\\log_{7}(3)}} && |\\text{TU}\\\\\n\\log_{7}(x) & = 3\\log_{7}(3) && |\\text{TU}\\\\\n\\log_{7}(x) & = \\log_{7}\\left(3^{3}\\right) && |7^{(\\cdot)}\\\\\nx & = 3^{3} = 27\\\\\n\\end{align*} \\]\n"], ["$\\log_{11}(x) = \\frac{4}{\\log_{3}(11)}$", "\\[ \\begin{align*} \\log_{11}(x) & = \\frac{4}{\\log_{3}(11)} && |\\text{LS Basiswechsel zu Basis 11}\\\\\n\\log_{11}(x) & = \\frac{4}{\\frac{\\log_{11}(11)}{\\log_{11}(3)}} && |\\text{TU}\\\\\n\\log_{11}(x) & = \\frac{4}{\\frac{1}{\\log_{11}(3)}} && |\\text{TU}\\\\\n\\log_{11}(x) & = 4\\log_{11}(3) && |\\text{TU}\\\\\n\\log_{11}(x) & = \\log_{11}\\left(3^{4}\\right) && |11^{(\\cdot)}\\\\\nx & = 3^{4} = 81\\\\\n\\end{align*} \\]\n"], ["$\\log_{11}(x) = \\frac{3}{\\log_{4}(11)}$", "\\[ \\begin{align*} \\log_{11}(x) & = \\frac{3}{\\log_{4}(11)} && |\\text{LS Basiswechsel zu Basis 11}\\\\\n\\log_{11}(x) & = \\frac{3}{\\frac{\\log_{11}(11)}{\\log_{11}(4)}} && |\\text{TU}\\\\\n\\log_{11}(x) & = \\frac{3}{\\frac{1}{\\log_{11}(4)}} && |\\text{TU}\\\\\n\\log_{11}(x) & = 3\\log_{11}(4) && |\\text{TU}\\\\\n\\log_{11}(x) & = \\log_{11}\\left(4^{3}\\right) && |11^{(\\cdot)}\\\\\nx & = 4^{3} = 64\\\\\n\\end{align*} \\]\n"], ["$\\log_{13}(x) = \\frac{4}{\\log_{4}(13)}$", "\\[ \\begin{align*} \\log_{13}(x) & = \\frac{4}{\\log_{4}(13)} && |\\text{LS Basiswechsel zu Basis 13}\\\\\n\\log_{13}(x) & = \\frac{4}{\\frac{\\log_{13}(13)}{\\log_{13}(4)}} && |\\text{TU}\\\\\n\\log_{13}(x) & = \\frac{4}{\\frac{1}{\\log_{13}(4)}} && |\\text{TU}\\\\\n\\log_{13}(x) & = 4\\log_{13}(4) && |\\text{TU}\\\\\n\\log_{13}(x) & = \\log_{13}\\left(4^{4}\\right) && |13^{(\\cdot)}\\\\\nx & = 4^{4} = 256\\\\\n\\end{align*} \\]\n"], ["$\\log_{13}(x) = \\frac{5}{\\log_{4}(13)}$", "\\[ \\begin{align*} \\log_{13}(x) & = \\frac{5}{\\log_{4}(13)} && |\\text{LS Basiswechsel zu Basis 13}\\\\\n\\log_{13}(x) & = \\frac{5}{\\frac{\\log_{13}(13)}{\\log_{13}(4)}} && |\\text{TU}\\\\\n\\log_{13}(x) & = \\frac{5}{\\frac{1}{\\log_{13}(4)}} && |\\text{TU}\\\\\n\\log_{13}(x) & = 5\\log_{13}(4) && |\\text{TU}\\\\\n\\log_{13}(x) & = \\log_{13}\\left(4^{5}\\right) && |13^{(\\cdot)}\\\\\nx & = 4^{5} = 1024\\\\\n\\end{align*} \\]\n"], ["$\\log_{7}(x) = \\frac{3}{\\log_{5}(7)}$", "\\[ \\begin{align*} \\log_{7}(x) & = \\frac{3}{\\log_{5}(7)} && |\\text{LS Basiswechsel zu Basis 7}\\\\\n\\log_{7}(x) & = \\frac{3}{\\frac{\\log_{7}(7)}{\\log_{7}(5)}} && |\\text{TU}\\\\\n\\log_{7}(x) & = \\frac{3}{\\frac{1}{\\log_{7}(5)}} && |\\text{TU}\\\\\n\\log_{7}(x) & = 3\\log_{7}(5) && |\\text{TU}\\\\\n\\log_{7}(x) & = \\log_{7}\\left(5^{3}\\right) && |7^{(\\cdot)}\\\\\nx & = 5^{3} = 125\\\\\n\\end{align*} \\]\n"], ["$\\log_{11}(x) = \\frac{4}{\\log_{5}(11)}$", "\\[ \\begin{align*} \\log_{11}(x) & = \\frac{4}{\\log_{5}(11)} && |\\text{LS Basiswechsel zu Basis 11}\\\\\n\\log_{11}(x) & = \\frac{4}{\\frac{\\log_{11}(11)}{\\log_{11}(5)}} && |\\text{TU}\\\\\n\\log_{11}(x) & = \\frac{4}{\\frac{1}{\\log_{11}(5)}} && |\\text{TU}\\\\\n\\log_{11}(x) & = 4\\log_{11}(5) && |\\text{TU}\\\\\n\\log_{11}(x) & = \\log_{11}\\left(5^{4}\\right) && |11^{(\\cdot)}\\\\\nx & = 5^{4} = 625\\\\\n\\end{align*} \\]\n"]], "
", "
");
ruby exponential-gleichungen-und-logarithmen.rb 6
=== Donnerstag 8. Mai 2025 === Keine Miniaufgabe