| Both sides previous revision Previous revision Next revision | Previous revision |
| lehrkraefte:blc:miniaufgaben [2025/11/30 17:21] – [Montag 24. November 2025] Ivo Blöchliger | lehrkraefte:blc:miniaufgaben [2025/12/09 05:49] (current) – Ivo Blöchliger |
|---|
| ~~NOTOC~~ | ~~NOTOC~~ |
| | [[lehrkraefte:blc:math-2025oim:start|Mathematik 1oIM]] |
| ===== Miniaufgaben ===== | ===== Miniaufgaben ===== |
| * Auf jede Montags-Lektion (ausser Prüfungslektionen) sind eine bis zwei Miniaufgaben vorzubereiten. Am Anfang der Lektion wird ein Würfel geworfen. Zeigt der Würfel eine Vier, Fünf oder Sechs, werden die Aufgaben in Form eines Kurztests geprüft. | * Auf jede Montags-Lektion (ausser Prüfungslektionen) sind eine bis zwei Miniaufgaben vorzubereiten. Am Anfang der Lektion wird ein Würfel geworfen. Zeigt der Würfel eine Vier, Fünf oder Sechs, werden die Aufgaben in Form eines Kurztests geprüft. |
| </PRELOAD> | </PRELOAD> |
| |
| |
| ==== Montag 1. Dezember 2025 ==== | |
| === Aufgabe 1 === | |
| Machen Sie eine Handskizze der folgenden Kurve, zeichnen Sie für einen Punkt der Kurve die Eigenschaft ein, und beschreiben Sie Punkte als geometrischen Ort.<JS>miniAufgabe("#exokegelschnitte","#solkegelschnitte", | |
| [["Parabel", "Alle Punkte $P$, die von einem gegebenen Brennpunkt $B$ und einer gegebenen Leitlinie $l$ den gleichen Abstand haben, d.h. $\\overline{BP} = \\overline{Pl}$."], ["Ellipse", "Alle Punkte $P$, die von zwei gegebenen Brennpunkten $B_1$ und $B_2$ eine gegebene Abstadssumme $d$ haben, d.h. $\\overline{B_1P} + \\overline{B_2P} = d$."], ["Hyperbel", "Alle Punkte $P$, die von zwei gegebenen Brennpunkten $B_1$ und $B_2$ eine gegebene Abstadsdifferenz $d$ haben, d.h. $\\overline{B_1P} - \\overline{B_2P} = d$."]], | |
| " <br><hr> ", "<br><hr>"); | |
| </JS> | |
| <HTML> | |
| <div id="exokegelschnitte"></div> | |
| |
| </HTML> | |
| <hidden Lösungen> | |
| |
| <HTML> | |
| <div id="solkegelschnitte"></div> | |
| <div style='font-size:12px;color:gray;'>ruby geometrische-oerter.rb 2</div> | |
| </HTML> | |
| |
| </hidden> | |
| |
| |
| === Aufgabe 2 === | |
| Ausrechnen, Resultat als gekürzter Bruch:<JS>miniAufgabe("#exokettenbruch","#solkettenbruch", | |
| [["$\\displaystyle 2 + \\frac{1}{2 + \\frac{1}{4 + \\frac{1}{2}}}$", "$\\displaystyle 2 + \\frac{1}{2 + \\frac{1}{4 + \\frac{1}{2}}} = 2 + \\frac{1}{2 + \\frac{1}{\\frac{9}{2}}} = 2 + \\frac{1}{2 + \\frac{2}{9}} = 2 + \\frac{1}{\\frac{20}{9}} = 2 + \\frac{9}{20} = \\frac{49}{20}$"], ["$\\displaystyle 2 + \\frac{1}{3 + \\frac{1}{2 + \\frac{1}{4}}}$", "$\\displaystyle 2 + \\frac{1}{3 + \\frac{1}{2 + \\frac{1}{4}}} = 2 + \\frac{1}{3 + \\frac{1}{\\frac{9}{4}}} = 2 + \\frac{1}{3 + \\frac{4}{9}} = 2 + \\frac{1}{\\frac{31}{9}} = 2 + \\frac{9}{31} = \\frac{71}{31}$"], ["$\\displaystyle 2 + \\frac{1}{3 + \\frac{1}{3 + \\frac{1}{2}}}$", "$\\displaystyle 2 + \\frac{1}{3 + \\frac{1}{3 + \\frac{1}{2}}} = 2 + \\frac{1}{3 + \\frac{1}{\\frac{7}{2}}} = 2 + \\frac{1}{3 + \\frac{2}{7}} = 2 + \\frac{1}{\\frac{23}{7}} = 2 + \\frac{7}{23} = \\frac{53}{23}$"], ["$\\displaystyle 2 + \\frac{1}{3 + \\frac{1}{4 + \\frac{1}{3}}}$", "$\\displaystyle 2 + \\frac{1}{3 + \\frac{1}{4 + \\frac{1}{3}}} = 2 + \\frac{1}{3 + \\frac{1}{\\frac{13}{3}}} = 2 + \\frac{1}{3 + \\frac{3}{13}} = 2 + \\frac{1}{\\frac{42}{13}} = 2 + \\frac{13}{42} = \\frac{97}{42}$"], ["$\\displaystyle 2 + \\frac{1}{1 + \\frac{1}{4 + \\frac{1}{5}}}$", "$\\displaystyle 2 + \\frac{1}{1 + \\frac{1}{4 + \\frac{1}{5}}} = 2 + \\frac{1}{1 + \\frac{1}{\\frac{21}{5}}} = 2 + \\frac{1}{1 + \\frac{5}{21}} = 2 + \\frac{1}{\\frac{26}{21}} = 2 + \\frac{21}{26} = \\frac{73}{26}$"], ["$\\displaystyle 2 + \\frac{1}{1 + \\frac{1}{4 + \\frac{1}{4}}}$", "$\\displaystyle 2 + \\frac{1}{1 + \\frac{1}{4 + \\frac{1}{4}}} = 2 + \\frac{1}{1 + \\frac{1}{\\frac{17}{4}}} = 2 + \\frac{1}{1 + \\frac{4}{17}} = 2 + \\frac{1}{\\frac{21}{17}} = 2 + \\frac{17}{21} = \\frac{59}{21}$"], ["$\\displaystyle 1 + \\frac{1}{3 + \\frac{1}{3 + \\frac{1}{3}}}$", "$\\displaystyle 1 + \\frac{1}{3 + \\frac{1}{3 + \\frac{1}{3}}} = 1 + \\frac{1}{3 + \\frac{1}{\\frac{10}{3}}} = 1 + \\frac{1}{3 + \\frac{3}{10}} = 1 + \\frac{1}{\\frac{33}{10}} = 1 + \\frac{10}{33} = \\frac{43}{33}$"], ["$\\displaystyle 1 + \\frac{1}{3 + \\frac{1}{2 + \\frac{1}{5}}}$", "$\\displaystyle 1 + \\frac{1}{3 + \\frac{1}{2 + \\frac{1}{5}}} = 1 + \\frac{1}{3 + \\frac{1}{\\frac{11}{5}}} = 1 + \\frac{1}{3 + \\frac{5}{11}} = 1 + \\frac{1}{\\frac{38}{11}} = 1 + \\frac{11}{38} = \\frac{49}{38}$"], ["$\\displaystyle 1 + \\frac{1}{3 + \\frac{1}{3 + \\frac{1}{3}}}$", "$\\displaystyle 1 + \\frac{1}{3 + \\frac{1}{3 + \\frac{1}{3}}} = 1 + \\frac{1}{3 + \\frac{1}{\\frac{10}{3}}} = 1 + \\frac{1}{3 + \\frac{3}{10}} = 1 + \\frac{1}{\\frac{33}{10}} = 1 + \\frac{10}{33} = \\frac{43}{33}$"], ["$\\displaystyle 1 + \\frac{1}{3 + \\frac{1}{3 + \\frac{1}{3}}}$", "$\\displaystyle 1 + \\frac{1}{3 + \\frac{1}{3 + \\frac{1}{3}}} = 1 + \\frac{1}{3 + \\frac{1}{\\frac{10}{3}}} = 1 + \\frac{1}{3 + \\frac{3}{10}} = 1 + \\frac{1}{\\frac{33}{10}} = 1 + \\frac{10}{33} = \\frac{43}{33}$"]], | |
| " ", " <hr> "); | |
| </JS> | |
| <HTML> | |
| <div id="exokettenbruch"></div> | |
| |
| </HTML> | |
| <hidden Lösungen> | |
| |
| <HTML> | |
| <div id="solkettenbruch"></div> | |
| <div style='font-size:12px;color:gray;'>ruby doppelbrueche-mit-zahlen-und-potenzen.rb 3</div> | |
| </HTML> | |
| |
| </hidden> | |
| |
| |
| ==== Montag 8. Dezember 2025 ==== | ==== Montag 15. Dezember 2025 ==== |
| === Aufgabe 1 === | |
| === Aufgabe 2 === | |
| Ausrechnen, Resultat als vollständig gekürzter Bruch. **Achtung:** Potenzen erst ganz am Schluss ausrechnen. Zuerst Basen in Primfaktoren zerlegen und vor dem Multiplizieren kürzen!<JS>miniAufgabe("#exonegativeexponenten","#solnegativeexponenten", | Ausrechnen, Resultat als vollständig gekürzter Bruch. **Achtung:** Potenzen erst ganz am Schluss ausrechnen. Zuerst Basen in Primfaktoren zerlegen und vor dem Multiplizieren kürzen!<JS>miniAufgabe("#exonegativeexponenten","#solnegativeexponenten", |
| [["$\\displaystyle \\left(\\frac{4}{3}-\\frac{14}{15}\\right)^{-2} \\cdot \\left(-\\frac{5}{4}\\right)^{-3}$", "$\\displaystyle \\left(\\frac{4}{3}-\\frac{14}{15}\\right)^{-2} \\cdot \\left(-\\frac{5}{4}\\right)^{-3} = \\left(\\frac{20}{15}-\\frac{14}{15}\\right)^{-2} \\cdot \\left(-\\frac{5}{4}\\right)^{-3} = \\left(\\frac{2}{5}\\right)^{-2} \\cdot \\left(-\\frac{4}{5}\\right)^3 = \\left(\\frac{5}{2}\\right)^2 \\cdot \\left(-\\frac{4}{5}\\right)^3 = \\left(\\frac{5}{2}\\right)^2 \\cdot \\left(-\\frac{2^{2}}{5}\\right)^3 = \\frac{5^{2}}{2^{2}} \\cdot -\\frac{2^{6}}{5^{3}} = -\\frac{2^{4}}{5} = -\\frac{16}{5}$"], ["$\\displaystyle \\left(\\frac{1}{2}-\\frac{1}{10}\\right)^{-2} \\cdot \\left(\\frac{5}{6}\\right)^{-3}$", "$\\displaystyle \\left(\\frac{1}{2}-\\frac{1}{10}\\right)^{-2} \\cdot \\left(\\frac{5}{6}\\right)^{-3} = \\left(\\frac{5}{10}-\\frac{1}{10}\\right)^{-2} \\cdot \\left(\\frac{5}{6}\\right)^{-3} = \\left(\\frac{2}{5}\\right)^{-2} \\cdot \\left(\\frac{6}{5}\\right)^3 = \\left(\\frac{5}{2}\\right)^2 \\cdot \\left(\\frac{6}{5}\\right)^3 = \\left(\\frac{5}{2}\\right)^2 \\cdot \\left(\\frac{2 \\cdot 3}{5}\\right)^3 = \\frac{5^{2}}{2^{2}} \\cdot \\frac{2^{3} \\cdot 3^{3}}{5^{3}} = \\frac{2 \\cdot 3^{3}}{5} = \\frac{54}{5}$"], ["$\\displaystyle \\left(-\\frac{6}{7}+\\frac{83}{56}\\right)^{-2} \\cdot \\left(\\frac{6}{5}\\right)^{-3}$", "$\\displaystyle \\left(-\\frac{6}{7}+\\frac{83}{56}\\right)^{-2} \\cdot \\left(\\frac{6}{5}\\right)^{-3} = \\left(-\\frac{48}{56}+\\frac{83}{56}\\right)^{-2} \\cdot \\left(\\frac{6}{5}\\right)^{-3} = \\left(\\frac{5}{8}\\right)^{-2} \\cdot \\left(\\frac{5}{6}\\right)^3 = \\left(\\frac{8}{5}\\right)^2 \\cdot \\left(\\frac{5}{6}\\right)^3 = \\left(\\frac{2^{3}}{5}\\right)^2 \\cdot \\left(\\frac{5}{2 \\cdot 3}\\right)^3 = \\frac{2^{6}}{5^{2}} \\cdot \\frac{5^{3}}{2^{3} \\cdot 3^{3}} = \\frac{2^{3} \\cdot 5}{3^{3}} = \\frac{40}{27}$"], ["$\\displaystyle \\left(\\frac{1}{2}-\\frac{1}{10}\\right)^{-2} \\cdot \\left(-\\frac{5}{6}\\right)^{-3}$", "$\\displaystyle \\left(\\frac{1}{2}-\\frac{1}{10}\\right)^{-2} \\cdot \\left(-\\frac{5}{6}\\right)^{-3} = \\left(\\frac{5}{10}-\\frac{1}{10}\\right)^{-2} \\cdot \\left(-\\frac{5}{6}\\right)^{-3} = \\left(\\frac{2}{5}\\right)^{-2} \\cdot \\left(-\\frac{6}{5}\\right)^3 = \\left(\\frac{5}{2}\\right)^2 \\cdot \\left(-\\frac{6}{5}\\right)^3 = \\left(\\frac{5}{2}\\right)^2 \\cdot \\left(-\\frac{2 \\cdot 3}{5}\\right)^3 = \\frac{5^{2}}{2^{2}} \\cdot -\\frac{2^{3} \\cdot 3^{3}}{5^{3}} = -\\frac{2 \\cdot 3^{3}}{5} = -\\frac{54}{5}$"], ["$\\displaystyle \\left(\\frac{5}{3}-\\frac{34}{15}\\right)^{-2} \\cdot \\left(-\\frac{10}{9}\\right)^{-3}$", "$\\displaystyle \\left(\\frac{5}{3}-\\frac{34}{15}\\right)^{-2} \\cdot \\left(-\\frac{10}{9}\\right)^{-3} = \\left(\\frac{25}{15}-\\frac{34}{15}\\right)^{-2} \\cdot \\left(-\\frac{10}{9}\\right)^{-3} = \\left(-\\frac{3}{5}\\right)^{-2} \\cdot \\left(-\\frac{9}{10}\\right)^3 = \\left(\\frac{5}{3}\\right)^2 \\cdot \\left(-\\frac{9}{10}\\right)^3 = \\left(\\frac{5}{3}\\right)^2 \\cdot \\left(-\\frac{3^{2}}{2 \\cdot 5}\\right)^3 = \\frac{5^{2}}{3^{2}} \\cdot -\\frac{3^{6}}{2^{3} \\cdot 5^{3}} = -\\frac{3^{4}}{2^{3} \\cdot 5} = -\\frac{81}{40}$"], ["$\\displaystyle \\left(-\\frac{6}{5}+\\frac{3}{2}\\right)^{-2} \\cdot \\left(-\\frac{5}{2}\\right)^{-3}$", "$\\displaystyle \\left(-\\frac{6}{5}+\\frac{3}{2}\\right)^{-2} \\cdot \\left(-\\frac{5}{2}\\right)^{-3} = \\left(-\\frac{12}{10}+\\frac{15}{10}\\right)^{-2} \\cdot \\left(-\\frac{5}{2}\\right)^{-3} = \\left(\\frac{3}{10}\\right)^{-2} \\cdot \\left(-\\frac{2}{5}\\right)^3 = \\left(\\frac{10}{3}\\right)^2 \\cdot \\left(-\\frac{2}{5}\\right)^3 = \\left(\\frac{2 \\cdot 5}{3}\\right)^2 \\cdot \\left(-\\frac{2}{5}\\right)^3 = \\frac{2^{2} \\cdot 5^{2}}{3^{2}} \\cdot -\\frac{2^{3}}{5^{3}} = -\\frac{2^{5}}{3^{2} \\cdot 5} = -\\frac{32}{45}$"], ["$\\displaystyle \\left(-\\frac{3}{2}+\\frac{2}{3}\\right)^{-2} \\cdot \\left(-\\frac{3}{5}\\right)^{-3}$", "$\\displaystyle \\left(-\\frac{3}{2}+\\frac{2}{3}\\right)^{-2} \\cdot \\left(-\\frac{3}{5}\\right)^{-3} = \\left(-\\frac{9}{6}+\\frac{4}{6}\\right)^{-2} \\cdot \\left(-\\frac{3}{5}\\right)^{-3} = \\left(-\\frac{5}{6}\\right)^{-2} \\cdot \\left(-\\frac{5}{3}\\right)^3 = \\left(\\frac{6}{5}\\right)^2 \\cdot \\left(-\\frac{5}{3}\\right)^3 = \\left(\\frac{2 \\cdot 3}{5}\\right)^2 \\cdot \\left(-\\frac{5}{3}\\right)^3 = \\frac{2^{2} \\cdot 3^{2}}{5^{2}} \\cdot -\\frac{5^{3}}{3^{3}} = -\\frac{2^{2} \\cdot 5}{3} = -\\frac{20}{3}$"], ["$\\displaystyle \\left(-\\frac{2}{3}+\\frac{3}{2}\\right)^{-2} \\cdot \\left(-\\frac{9}{5}\\right)^{-3}$", "$\\displaystyle \\left(-\\frac{2}{3}+\\frac{3}{2}\\right)^{-2} \\cdot \\left(-\\frac{9}{5}\\right)^{-3} = \\left(-\\frac{4}{6}+\\frac{9}{6}\\right)^{-2} \\cdot \\left(-\\frac{9}{5}\\right)^{-3} = \\left(\\frac{5}{6}\\right)^{-2} \\cdot \\left(-\\frac{5}{9}\\right)^3 = \\left(\\frac{6}{5}\\right)^2 \\cdot \\left(-\\frac{5}{9}\\right)^3 = \\left(\\frac{2 \\cdot 3}{5}\\right)^2 \\cdot \\left(-\\frac{5}{3^{2}}\\right)^3 = \\frac{2^{2} \\cdot 3^{2}}{5^{2}} \\cdot -\\frac{5^{3}}{3^{6}} = -\\frac{2^{2} \\cdot 5}{3^{4}} = -\\frac{20}{81}$"], ["$\\displaystyle \\left(-\\frac{2}{5}+\\frac{4}{35}\\right)^{-2} \\cdot \\left(-\\frac{7}{6}\\right)^{-3}$", "$\\displaystyle \\left(-\\frac{2}{5}+\\frac{4}{35}\\right)^{-2} \\cdot \\left(-\\frac{7}{6}\\right)^{-3} = \\left(-\\frac{14}{35}+\\frac{4}{35}\\right)^{-2} \\cdot \\left(-\\frac{7}{6}\\right)^{-3} = \\left(-\\frac{2}{7}\\right)^{-2} \\cdot \\left(-\\frac{6}{7}\\right)^3 = \\left(\\frac{7}{2}\\right)^2 \\cdot \\left(-\\frac{6}{7}\\right)^3 = \\left(\\frac{7}{2}\\right)^2 \\cdot \\left(-\\frac{2 \\cdot 3}{7}\\right)^3 = \\frac{7^{2}}{2^{2}} \\cdot -\\frac{2^{3} \\cdot 3^{3}}{7^{3}} = -\\frac{2 \\cdot 3^{3}}{7} = -\\frac{54}{7}$"], ["$\\displaystyle \\left(\\frac{3}{4}-\\frac{17}{12}\\right)^{-2} \\cdot \\left(-\\frac{3}{4}\\right)^{-3}$", "$\\displaystyle \\left(\\frac{3}{4}-\\frac{17}{12}\\right)^{-2} \\cdot \\left(-\\frac{3}{4}\\right)^{-3} = \\left(\\frac{9}{12}-\\frac{17}{12}\\right)^{-2} \\cdot \\left(-\\frac{3}{4}\\right)^{-3} = \\left(-\\frac{2}{3}\\right)^{-2} \\cdot \\left(-\\frac{4}{3}\\right)^3 = \\left(\\frac{3}{2}\\right)^2 \\cdot \\left(-\\frac{4}{3}\\right)^3 = \\left(\\frac{3}{2}\\right)^2 \\cdot \\left(-\\frac{2^{2}}{3}\\right)^3 = \\frac{3^{2}}{2^{2}} \\cdot -\\frac{2^{6}}{3^{3}} = -\\frac{2^{4}}{3} = -\\frac{16}{3}$"]], | [["$\\displaystyle \\left(\\frac{4}{3}-\\frac{14}{15}\\right)^{-2} \\cdot \\left(-\\frac{5}{4}\\right)^{-3}$", "$\\displaystyle \\left(\\frac{4}{3}-\\frac{14}{15}\\right)^{-2} \\cdot \\left(-\\frac{5}{4}\\right)^{-3} = \\left(\\frac{20}{15}-\\frac{14}{15}\\right)^{-2} \\cdot \\left(-\\frac{5}{4}\\right)^{-3} = \\left(\\frac{2}{5}\\right)^{-2} \\cdot \\left(-\\frac{4}{5}\\right)^3 = \\left(\\frac{5}{2}\\right)^2 \\cdot \\left(-\\frac{4}{5}\\right)^3 = \\left(\\frac{5}{2}\\right)^2 \\cdot \\left(-\\frac{2^{2}}{5}\\right)^3 = \\frac{5^{2}}{2^{2}} \\cdot -\\frac{2^{6}}{5^{3}} = -\\frac{2^{4}}{5} = -\\frac{16}{5}$"], ["$\\displaystyle \\left(\\frac{1}{2}-\\frac{1}{10}\\right)^{-2} \\cdot \\left(\\frac{5}{6}\\right)^{-3}$", "$\\displaystyle \\left(\\frac{1}{2}-\\frac{1}{10}\\right)^{-2} \\cdot \\left(\\frac{5}{6}\\right)^{-3} = \\left(\\frac{5}{10}-\\frac{1}{10}\\right)^{-2} \\cdot \\left(\\frac{5}{6}\\right)^{-3} = \\left(\\frac{2}{5}\\right)^{-2} \\cdot \\left(\\frac{6}{5}\\right)^3 = \\left(\\frac{5}{2}\\right)^2 \\cdot \\left(\\frac{6}{5}\\right)^3 = \\left(\\frac{5}{2}\\right)^2 \\cdot \\left(\\frac{2 \\cdot 3}{5}\\right)^3 = \\frac{5^{2}}{2^{2}} \\cdot \\frac{2^{3} \\cdot 3^{3}}{5^{3}} = \\frac{2 \\cdot 3^{3}}{5} = \\frac{54}{5}$"], ["$\\displaystyle \\left(-\\frac{6}{7}+\\frac{83}{56}\\right)^{-2} \\cdot \\left(\\frac{6}{5}\\right)^{-3}$", "$\\displaystyle \\left(-\\frac{6}{7}+\\frac{83}{56}\\right)^{-2} \\cdot \\left(\\frac{6}{5}\\right)^{-3} = \\left(-\\frac{48}{56}+\\frac{83}{56}\\right)^{-2} \\cdot \\left(\\frac{6}{5}\\right)^{-3} = \\left(\\frac{5}{8}\\right)^{-2} \\cdot \\left(\\frac{5}{6}\\right)^3 = \\left(\\frac{8}{5}\\right)^2 \\cdot \\left(\\frac{5}{6}\\right)^3 = \\left(\\frac{2^{3}}{5}\\right)^2 \\cdot \\left(\\frac{5}{2 \\cdot 3}\\right)^3 = \\frac{2^{6}}{5^{2}} \\cdot \\frac{5^{3}}{2^{3} \\cdot 3^{3}} = \\frac{2^{3} \\cdot 5}{3^{3}} = \\frac{40}{27}$"], ["$\\displaystyle \\left(\\frac{1}{2}-\\frac{1}{10}\\right)^{-2} \\cdot \\left(-\\frac{5}{6}\\right)^{-3}$", "$\\displaystyle \\left(\\frac{1}{2}-\\frac{1}{10}\\right)^{-2} \\cdot \\left(-\\frac{5}{6}\\right)^{-3} = \\left(\\frac{5}{10}-\\frac{1}{10}\\right)^{-2} \\cdot \\left(-\\frac{5}{6}\\right)^{-3} = \\left(\\frac{2}{5}\\right)^{-2} \\cdot \\left(-\\frac{6}{5}\\right)^3 = \\left(\\frac{5}{2}\\right)^2 \\cdot \\left(-\\frac{6}{5}\\right)^3 = \\left(\\frac{5}{2}\\right)^2 \\cdot \\left(-\\frac{2 \\cdot 3}{5}\\right)^3 = \\frac{5^{2}}{2^{2}} \\cdot -\\frac{2^{3} \\cdot 3^{3}}{5^{3}} = -\\frac{2 \\cdot 3^{3}}{5} = -\\frac{54}{5}$"], ["$\\displaystyle \\left(\\frac{5}{3}-\\frac{34}{15}\\right)^{-2} \\cdot \\left(-\\frac{10}{9}\\right)^{-3}$", "$\\displaystyle \\left(\\frac{5}{3}-\\frac{34}{15}\\right)^{-2} \\cdot \\left(-\\frac{10}{9}\\right)^{-3} = \\left(\\frac{25}{15}-\\frac{34}{15}\\right)^{-2} \\cdot \\left(-\\frac{10}{9}\\right)^{-3} = \\left(-\\frac{3}{5}\\right)^{-2} \\cdot \\left(-\\frac{9}{10}\\right)^3 = \\left(\\frac{5}{3}\\right)^2 \\cdot \\left(-\\frac{9}{10}\\right)^3 = \\left(\\frac{5}{3}\\right)^2 \\cdot \\left(-\\frac{3^{2}}{2 \\cdot 5}\\right)^3 = \\frac{5^{2}}{3^{2}} \\cdot -\\frac{3^{6}}{2^{3} \\cdot 5^{3}} = -\\frac{3^{4}}{2^{3} \\cdot 5} = -\\frac{81}{40}$"], ["$\\displaystyle \\left(-\\frac{6}{5}+\\frac{3}{2}\\right)^{-2} \\cdot \\left(-\\frac{5}{2}\\right)^{-3}$", "$\\displaystyle \\left(-\\frac{6}{5}+\\frac{3}{2}\\right)^{-2} \\cdot \\left(-\\frac{5}{2}\\right)^{-3} = \\left(-\\frac{12}{10}+\\frac{15}{10}\\right)^{-2} \\cdot \\left(-\\frac{5}{2}\\right)^{-3} = \\left(\\frac{3}{10}\\right)^{-2} \\cdot \\left(-\\frac{2}{5}\\right)^3 = \\left(\\frac{10}{3}\\right)^2 \\cdot \\left(-\\frac{2}{5}\\right)^3 = \\left(\\frac{2 \\cdot 5}{3}\\right)^2 \\cdot \\left(-\\frac{2}{5}\\right)^3 = \\frac{2^{2} \\cdot 5^{2}}{3^{2}} \\cdot -\\frac{2^{3}}{5^{3}} = -\\frac{2^{5}}{3^{2} \\cdot 5} = -\\frac{32}{45}$"], ["$\\displaystyle \\left(-\\frac{3}{2}+\\frac{2}{3}\\right)^{-2} \\cdot \\left(-\\frac{3}{5}\\right)^{-3}$", "$\\displaystyle \\left(-\\frac{3}{2}+\\frac{2}{3}\\right)^{-2} \\cdot \\left(-\\frac{3}{5}\\right)^{-3} = \\left(-\\frac{9}{6}+\\frac{4}{6}\\right)^{-2} \\cdot \\left(-\\frac{3}{5}\\right)^{-3} = \\left(-\\frac{5}{6}\\right)^{-2} \\cdot \\left(-\\frac{5}{3}\\right)^3 = \\left(\\frac{6}{5}\\right)^2 \\cdot \\left(-\\frac{5}{3}\\right)^3 = \\left(\\frac{2 \\cdot 3}{5}\\right)^2 \\cdot \\left(-\\frac{5}{3}\\right)^3 = \\frac{2^{2} \\cdot 3^{2}}{5^{2}} \\cdot -\\frac{5^{3}}{3^{3}} = -\\frac{2^{2} \\cdot 5}{3} = -\\frac{20}{3}$"], ["$\\displaystyle \\left(-\\frac{2}{3}+\\frac{3}{2}\\right)^{-2} \\cdot \\left(-\\frac{9}{5}\\right)^{-3}$", "$\\displaystyle \\left(-\\frac{2}{3}+\\frac{3}{2}\\right)^{-2} \\cdot \\left(-\\frac{9}{5}\\right)^{-3} = \\left(-\\frac{4}{6}+\\frac{9}{6}\\right)^{-2} \\cdot \\left(-\\frac{9}{5}\\right)^{-3} = \\left(\\frac{5}{6}\\right)^{-2} \\cdot \\left(-\\frac{5}{9}\\right)^3 = \\left(\\frac{6}{5}\\right)^2 \\cdot \\left(-\\frac{5}{9}\\right)^3 = \\left(\\frac{2 \\cdot 3}{5}\\right)^2 \\cdot \\left(-\\frac{5}{3^{2}}\\right)^3 = \\frac{2^{2} \\cdot 3^{2}}{5^{2}} \\cdot -\\frac{5^{3}}{3^{6}} = -\\frac{2^{2} \\cdot 5}{3^{4}} = -\\frac{20}{81}$"], ["$\\displaystyle \\left(-\\frac{2}{5}+\\frac{4}{35}\\right)^{-2} \\cdot \\left(-\\frac{7}{6}\\right)^{-3}$", "$\\displaystyle \\left(-\\frac{2}{5}+\\frac{4}{35}\\right)^{-2} \\cdot \\left(-\\frac{7}{6}\\right)^{-3} = \\left(-\\frac{14}{35}+\\frac{4}{35}\\right)^{-2} \\cdot \\left(-\\frac{7}{6}\\right)^{-3} = \\left(-\\frac{2}{7}\\right)^{-2} \\cdot \\left(-\\frac{6}{7}\\right)^3 = \\left(\\frac{7}{2}\\right)^2 \\cdot \\left(-\\frac{6}{7}\\right)^3 = \\left(\\frac{7}{2}\\right)^2 \\cdot \\left(-\\frac{2 \\cdot 3}{7}\\right)^3 = \\frac{7^{2}}{2^{2}} \\cdot -\\frac{2^{3} \\cdot 3^{3}}{7^{3}} = -\\frac{2 \\cdot 3^{3}}{7} = -\\frac{54}{7}$"], ["$\\displaystyle \\left(\\frac{3}{4}-\\frac{17}{12}\\right)^{-2} \\cdot \\left(-\\frac{3}{4}\\right)^{-3}$", "$\\displaystyle \\left(\\frac{3}{4}-\\frac{17}{12}\\right)^{-2} \\cdot \\left(-\\frac{3}{4}\\right)^{-3} = \\left(\\frac{9}{12}-\\frac{17}{12}\\right)^{-2} \\cdot \\left(-\\frac{3}{4}\\right)^{-3} = \\left(-\\frac{2}{3}\\right)^{-2} \\cdot \\left(-\\frac{4}{3}\\right)^3 = \\left(\\frac{3}{2}\\right)^2 \\cdot \\left(-\\frac{4}{3}\\right)^3 = \\left(\\frac{3}{2}\\right)^2 \\cdot \\left(-\\frac{2^{2}}{3}\\right)^3 = \\frac{3^{2}}{2^{2}} \\cdot -\\frac{2^{6}}{3^{3}} = -\\frac{2^{4}}{3} = -\\frac{16}{3}$"]], |
| |
| </hidden> | </hidden> |
| |
| |
| |
| ==== Aufgaben vom aktuellen Jahr ==== | ==== Aufgaben vom aktuellen Jahr ==== |
| * [[lehrkraefte:blc:miniaufgaben:kw49-2025|KW49, 8. Dezember 2025: ]] | * [[lehrkraefte:blc:miniaufgaben:kw50-2025|KW50, 15. Dezember 2025: Potenzen und Bruchrechnen mit Zahlen]] |
| | * [[lehrkraefte:blc:miniaufgaben:kw49-2025|KW49, 8. Dezember 2025: Definition Kegelschnitte als geometrische Örter, Potenzen und Bruchrechnen mit Zahlen]] |
| * [[lehrkraefte:blc:miniaufgaben:kw48-2025|KW47, 1. Dezember 2025: Definition Kegelschnitte als geometrische Örter, Kettenbrüche]] | * [[lehrkraefte:blc:miniaufgaben:kw48-2025|KW47, 1. Dezember 2025: Definition Kegelschnitte als geometrische Örter, Kettenbrüche]] |
| * [[lehrkraefte:blc:miniaufgaben:kw47-2025|KW47, 24. November 2025: Geometrische Örter, Ausmultiplizieren]] | * [[lehrkraefte:blc:miniaufgaben:kw47-2025|KW47, 24. November 2025: Geometrische Örter, Ausmultiplizieren]] |