lehrkraefte:blc:miniaufgaben:kw18-2018

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

lehrkraefte:blc:miniaufgaben:kw18-2018 [2018/05/01 06:47] – created Ivo Blöchligerlehrkraefte:blc:miniaufgaben:kw18-2018 [2020/08/09 13:40] (current) – external edit 127.0.0.1
Line 1: Line 1:
 +
 +
 +<PRELOAD>
 +miniaufgabe.js
 +</PRELOAD>
 +
 +
 +==== 30. April 2018 bis 4. Mai 2018 ====
 +=== Dienstag 1. Mai 2018 ===
 +[[https://fginfo.ksbg.ch/~ivo/cgi-bin/miniquiz.rb?quiz=QuizKurvendiskussion|Multiple Choice zur Kurvendiskussion]]
 +=== Freitag 4. Mai 2018 ===
 +Leiten Sie von Hand und ohne Unterlagen ab:
 +<JS>miniAufgabe("#exokettenregelvonpoly","#solkettenregelvonpoly",
 +[["a) $f(x)=\\ln\\left(-\\frac{4}{3}x^{3}+\\frac{1}{2}x^{2}+\\frac{2}{9}\\right)\\quad$ b) $f(x)=\\mathrm{e}^{\\left(\\frac{4}{7}x^{4}+\\frac{4}{5}x^{3}-\\frac{2}{3}\\right)}\\quad$ ", "a) $f'(x)=\\frac{1}{-\\frac{4}{3}x^{3}+\\frac{1}{2}x^{2}+\\frac{2}{9}}\\cdot \\left(-4x^{2}x\\right)\\quad$ b) $f'(x)=\\mathrm{e}^{\\left(\\frac{4}{7}x^{4}+\\frac{4}{5}x^{3}-\\frac{2}{3}\\right)}\\cdot \\left(\\frac{16}{7}x^{3}+\\frac{12}{5}x^{2}\\right)\\quad$ "], ["a) $f(x)=\\ln\\left(\\frac{2}{5}x^{3}-\\frac{2}{3}x+\\frac{1}{2}\\right)\\quad$ b) $f(x)=\\mathrm{e}^{\\left(\\frac{3}{2}x^{3}+\\frac{1}{4}x^{2}-\\frac{2}{3}x\\right)}\\quad$ ", "a) $f'(x)=\\frac{1}{\\frac{2}{5}x^{3}-\\frac{2}{3}x+\\frac{1}{2}}\\cdot \\left(\\frac{6}{5}x^{2}-\\frac{2}{3}\\right)\\quad$ b) $f'(x)=\\mathrm{e}^{\\left(\\frac{3}{2}x^{3}+\\frac{1}{4}x^{2}-\\frac{2}{3}x\\right)}\\cdot \\left(\\frac{9}{2}x^{2}+\\frac{1}{2}x-\\frac{2}{3}\\right)\\quad$ "], ["a) $f(x)=\\ln\\left(-\\frac{1}{5}x^{4}+\\frac{2}{5}x^{3}-\\frac{1}{4}\\right)\\quad$ b) $f(x)=\\mathrm{e}^{\\left(\\frac{1}{6}x^{4}+\\frac{3}{4}x-\\frac{1}{4}\\right)}\\quad$ ", "a) $f'(x)=\\frac{1}{-\\frac{1}{5}x^{4}+\\frac{2}{5}x^{3}-\\frac{1}{4}}\\cdot \\left(-\\frac{4}{5}x^{3}+\\frac{6}{5}x^{2}\\right)\\quad$ b) $f'(x)=\\mathrm{e}^{\\left(\\frac{1}{6}x^{4}+\\frac{3}{4}x-\\frac{1}{4}\\right)}\\cdot \\left(\\frac{2}{3}x^{3}+\\frac{3}{4}\\right)\\quad$ "], ["a) $f(x)=\\ln\\left(\\frac{3}{4}x^{3}+\\frac{2}{9}x^{2}+\\frac{3}{4}\\right)\\quad$ b) $f(x)=\\mathrm{e}^{\\left(-\\frac{1}{6}x^{4}-\\frac{2}{5}x^{3}+\\frac{1}{6}x\\right)}\\quad$ ", "a) $f'(x)=\\frac{1}{\\frac{3}{4}x^{3}+\\frac{2}{9}x^{2}+\\frac{3}{4}}\\cdot \\left(\\frac{9}{4}x^{2}+\\frac{4}{9}x\\right)\\quad$ b) $f'(x)=\\mathrm{e}^{\\left(-\\frac{1}{6}x^{4}-\\frac{2}{5}x^{3}+\\frac{1}{6}x\\right)}\\cdot \\left(-\\frac{2}{3}x^{3}-\\frac{6}{5}x^{2}+\\frac{1}{6}\\right)\\quad$ "], ["a) $f(x)=\\ln\\left(-\\frac{1}{6}x^{4}+\\frac{1}{5}x^{3}+\\frac{3}{2}\\right)\\quad$ b) $f(x)=\\mathrm{e}^{\\left(\\frac{1}{4}x^{4}+\\frac{2}{7}x^{2}-\\frac{1}{5}x\\right)}\\quad$ ", "a) $f'(x)=\\frac{1}{-\\frac{1}{6}x^{4}+\\frac{1}{5}x^{3}+\\frac{3}{2}}\\cdot \\left(-\\frac{2}{3}x^{3}+\\frac{3}{5}x^{2}\\right)\\quad$ b) $f'(x)=\\mathrm{e}^{\\left(\\frac{1}{4}x^{4}+\\frac{2}{7}x^{2}-\\frac{1}{5}x\\right)}\\cdot \\left(x^{3}+\\frac{4}{7}x-\\frac{1}{5}\\right)\\quad$ "], ["a) $f(x)=\\ln\\left(-\\frac{3}{7}x^{2}+\\frac{2}{3}x+\\frac{1}{2}\\right)\\quad$ b) $f(x)=\\mathrm{e}^{\\left(\\frac{4}{5}x^{3}-\\frac{1}{9}x^{2}+\\frac{1}{3}\\right)}\\quad$ ", "a) $f'(x)=\\frac{1}{-\\frac{3}{7}x^{2}+\\frac{2}{3}x+\\frac{1}{2}}\\cdot \\left(-\\frac{6}{7}x+\\frac{2}{3}\\right)\\quad$ b) $f'(x)=\\mathrm{e}^{\\left(\\frac{4}{5}x^{3}-\\frac{1}{9}x^{2}+\\frac{1}{3}\\right)}\\cdot \\left(\\frac{12}{5}x^{2}-\\frac{2}{9}x\\right)\\quad$ "], ["a) $f(x)=\\ln\\left(-\\frac{1}{7}x^{4}+\\frac{3}{4}x-\\frac{3}{7}\\right)\\quad$ b) $f(x)=\\mathrm{e}^{\\left(\\frac{1}{4}x^{3}-\\frac{1}{3}x^{2}-\\frac{1}{3}\\right)}\\quad$ ", "a) $f'(x)=\\frac{1}{-\\frac{1}{7}x^{4}+\\frac{3}{4}x-\\frac{3}{7}}\\cdot \\left(-\\frac{4}{7}x^{3}+\\frac{3}{4}\\right)\\quad$ b) $f'(x)=\\mathrm{e}^{\\left(\\frac{1}{4}x^{3}-\\frac{1}{3}x^{2}-\\frac{1}{3}\\right)}\\cdot \\left(\\frac{3}{4}x^{2}-\\frac{2}{3}x\\right)\\quad$ "], ["a) $f(x)=\\ln\\left(\\frac{2}{3}x^{4}-\\frac{1}{6}x^{3}+\\frac{1}{2}\\right)\\quad$ b) $f(x)=\\mathrm{e}^{\\left(\\frac{1}{4}x^{4}-\\frac{3}{5}x^{3}+\\frac{1}{8}\\right)}\\quad$ ", "a) $f'(x)=\\frac{1}{\\frac{2}{3}x^{4}-\\frac{1}{6}x^{3}+\\frac{1}{2}}\\cdot \\left(\\frac{8}{3}x^{3}-\\frac{1}{2}x^{2}\\right)\\quad$ b) $f'(x)=\\mathrm{e}^{\\left(\\frac{1}{4}x^{4}-\\frac{3}{5}x^{3}+\\frac{1}{8}\\right)}\\cdot \\left(x^{3}-\\frac{9}{5}x^{2}\\right)\\quad$ "], ["a) $f(x)=\\ln\\left(\\frac{4}{7}x^{4}+\\frac{1}{5}x^{2}+\\frac{1}{6}x\\right)\\quad$ b) $f(x)=\\mathrm{e}^{\\left(-\\frac{1}{6}x^{2}+\\frac{1}{4}x-\\frac{2}{3}\\right)}\\quad$ ", "a) $f'(x)=\\frac{1}{\\frac{4}{7}x^{4}+\\frac{1}{5}x^{2}+\\frac{1}{6}x}\\cdot \\left(\\frac{16}{7}x^{3}+\\frac{2}{5}x+\\frac{1}{6}\\right)\\quad$ b) $f'(x)=\\mathrm{e}^{\\left(-\\frac{1}{6}x^{2}+\\frac{1}{4}x-\\frac{2}{3}\\right)}\\cdot \\left(-\\frac{1}{3}x+\\frac{1}{4}\\right)\\quad$ "], ["a) $f(x)=\\ln\\left(-\\frac{3}{2}x^{4}+\\frac{1}{2}x^{3}-\\frac{4}{9}x\\right)\\quad$ b) $f(x)=\\mathrm{e}^{\\left(\\frac{1}{6}x^{4}+\\frac{1}{2}x^{3}+\\frac{1}{5}x\\right)}\\quad$ ", "a) $f'(x)=\\frac{1}{-\\frac{3}{2}x^{4}+\\frac{1}{2}x^{3}-\\frac{4}{9}x}\\cdot \\left(-6x^{3}+\\frac{3}{2}x^{2}-\\frac{4}{9}\\right)\\quad$ b) $f'(x)=\\mathrm{e}^{\\left(\\frac{1}{6}x^{4}+\\frac{1}{2}x^{3}+\\frac{1}{5}x\\right)}\\cdot \\left(\\frac{2}{3}x^{3}+\\frac{3}{2}x^{2}+\\frac{1}{5}\\right)\\quad$ "]],
 +" <br> ");
 +</JS>
 +<HTML>
 +<div id="exokettenregelvonpoly"></div>
 +
 +</HTML>
 +<hidden Lösungen>
 +<HTML>
 +<div id="solkettenregelvonpoly"></div>
 +</HTML>
 +</hidden>
 +