Differences
This shows you the differences between two versions of the page.
| lehrkraefte:blc:miniaufgaben:kw07-2017 [2017/02/05 12:51] – created Ivo Blöchliger | lehrkraefte:blc:miniaufgaben:kw07-2017 [2020/08/09 13:16] (current) – external edit 127.0.0.1 | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| + | ==== 13. Februar 2017 bis 18. Februar 2017 ==== | ||
| + | === Dienstag 14. Februar 2017 === | ||
| + | Vereinfachen Sie: | ||
| + | - $$\left(x^{\frac{8}{3}}\right)^{\frac{13}{16}}: | ||
| + | - $$\left(x^{-\frac{3}{5}}\right)^{-\frac{115}{18}}: | ||
| + | - $$\left(x^{\frac{6}{5}}\right)^{\frac{1}{9}}\cdot x^{\frac{5}{3}}$$ | ||
| + | |||
| + | <hidden Lösungen> | ||
| + | - $$x^{\frac{2}{3}}$$ | ||
| + | - $$x^{\frac{7}{3}}$$ | ||
| + | - $$x^{\frac{9}{5}}$$ | ||
| + | </ | ||
| + | |||
| + | |||
| + | === Donnerstag 16. Februar 2017 === | ||
| + | Lösen Sie durch faktorisieren: | ||
| + | - $x^2+4x+4 = 9$ | ||
| + | - $x^2-6x+9 = 4$ | ||
| + | - $x^2+8x+16 = 1$ | ||
| + | |||
| + | <hidden Lösungen> | ||
| + | - $(x+2)^2 = 9$ also $(x+2)=\pm 3$, also $x_{1}=-5$, $x_=1$. | ||
| + | - $(x-3)^2 = 4$ also $(x-3)=\pm 2$, also $x_1=1$, $x_2=5$. | ||
| + | - $(x+4)^2 = 1$ also $(x+4)=\pm 1$, also $x_1=-5$, $x_2=3$. | ||
| + | </ | ||
| + | === Freitag 17. Februar 2017 === | ||
| + | Lösen Sie schrittweise auf: | ||
| + | - $${{15x}\over{8}}+{{4}\over{3}}={{7x}\over{4}}+{{13}\over{8}}$$ | ||
| + | - $${{19x}\over{20}}+{{6}\over{5}}={{4x}\over{5}}+{{7}\over{5}}$$ | ||
| + | - $${{53x}\over{18}}+{{7}\over{6}}={{8x}\over{3}}+{{4}\over{3}}$$ | ||
| + | |||
| + | |||
| + | <hidden Lösungen> | ||
| + | 1. | ||
| + | |||
| + | $\begin{align*} | ||
| + | {{15x}\over{8}}+{{4}\over{3}} &= {{7x}\over{4}}+{{13}\over{8}} && |\cdot 24\\ | ||
| + | 45x+32 &= 42x+39 && |-\left(42x+32\right)\\ | ||
| + | 3x &= 7 && |:3\\ | ||
| + | x &= {{7}\over{3}} | ||
| + | \end{align*}$ | ||
| + | |||
| + | 2. | ||
| + | |||
| + | $\begin{align*} | ||
| + | {{19x}\over{20}}+{{6}\over{5}} &= {{4x}\over{5}}+{{7}\over{5}} && |\cdot 20\\ | ||
| + | 19x+24 &= 16x+28 && |-\left(16x+24\right)\\ | ||
| + | 3x &= 4 && |:3\\ | ||
| + | x &= {{4}\over{3}} | ||
| + | \end{align*}$ | ||
| + | |||
| + | 3. | ||
| + | |||
| + | $\begin{align*} | ||
| + | {{53x}\over{18}}+{{7}\over{6}} &= {{8x}\over{3}}+{{4}\over{3}} && |\cdot 18\\ | ||
| + | 53x+21 &= 48x+24 && |-\left(48x+21\right)\\ | ||
| + | 5x &= 3 && |:5\\ | ||
| + | x &= {{3}\over{5}} | ||
| + | \end{align*}$ | ||
| + | |||
| + | </ | ||