lehrkraefte:blc:miniaufgaben:kw02-2018

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

lehrkraefte:blc:miniaufgaben:kw02-2018 [2018/01/04 09:39] – created Ivo Blöchligerlehrkraefte:blc:miniaufgaben:kw02-2018 [2020/08/09 13:45] (current) – external edit 127.0.0.1
Line 1: Line 1:
 +<PRELOAD>
 +miniaufgabe.js
 +</PRELOAD>
 +
 +
 +
 +==== 8. Januar 2018 bis 12. Januar 2018 ====
 +=== Dienstag 9. Januar 2018 und Donnerstag 11. Januar 2018 ===
 +Vereinfachen Sie und schreiben Sie als ein Produkt von je einer Potenz von $x$ und $y$:
 +<JS>miniAufgabe("#exopow","#solpow",
 +[["$\\displaystyle \\frac{\\left(x^{2a-b-1}y^{-2b}\\right)^{-a}}{x^{(-2a^2)-2ba+a}y^{2a^2+ba-2a}}$", "$x^{3ba} y^{-2a^2+ba+2a}$"], ["$\\displaystyle \\frac{\\left(x^{2a+2}y^{2a+2b}\\right)^{-b}}{x^{(-ba)-b^2-b}y^{ba+2b^2+2b}}$", "$x^{-ba+b^2-b} y^{-3ba-4b^2-2b}$"], ["$\\displaystyle \\frac{x^{2a^2+a}y^{2a-2a^2}}{\\left(x^{(-a)-2b}y^{(-2a)-1}\\right)^{-a}}$", "$x^{a^2-2ba+a} y^{a-4a^2}$"], ["$\\displaystyle \\frac{x^{(-2a^2)-ba}y^{a^2-ba+2a}}{\\left(x^{2b-2a}y^{(-a)-2}\\right)^{a}}$", "$x^{-3ba} y^{2a^2-ba+4a}$"], ["$\\displaystyle \\frac{x^{(-ba)-b^2-2b}y^{(-2ba)+b^2+2b}}{\\left(x^{2a-b}y^{(-a)-b+1}\\right)^{b}}$", "$x^{-3ba-2b} y^{-ba+2b^2+b}$"], ["$\\displaystyle \\frac{\\left(x^{b-2}y^{(-a)-2}\\right)^{a}}{x^{a^2+2ba+2a}y^{2a^2-2ba+a}}$", "$x^{-a^2-ba-4a} y^{-3a^2+2ba-3a}$"], ["$\\displaystyle \\frac{x^{(-2a^2)-2ba+a}y^{(-a^2)+2ba-2a}}{\\left(x^{2a-2}y^{(-a)-1}\\right)^{a}}$", "$x^{-4a^2-2ba+3a} y^{2ba-a}$"], ["$\\displaystyle \\frac{x^{ba+2a}y^{a^2-ba-a}}{\\left(x^{2a+b+2}y^{2a-2b-2}\\right)^{-a}}$", "$x^{2a^2+2ba+4a} y^{3a^2-3ba-3a}$"], ["$\\displaystyle \\frac{\\left(x^{2a+2}y^{(-a)-2b-2}\\right)^{b}}{x^{(-ba)+2b^2-2b}y^{(-ba)+2b^2-b}}$", "$x^{3ba-2b^2+4b} y^{-4b^2-b}$"], ["$\\displaystyle \\frac{x^{(-2a^2)-a}y^{(-a^2)+2ba+2a}}{\\left(x^{a-2b+2}y^{(-a)+2b+2}\\right)^{-a}}$", "$x^{-a^2-2ba+a} y^{-2a^2+4ba+4a}$"]],
 +" &nbsp; &nbsp; ");
 +</JS>
 +<HTML>
 +<div id="exopow"></div>
 +
 +</HTML>
 +<hidden Lösungen>
 +<HTML>
 +<div id="solpow"></div>
 +</HTML>
 +</hidden>
 +
 +
 +=== Freitag 12. Januar 2018 ===
 +Berechnen Sie von Hand (Repetieren Sie dazu 2er Potenzen bis $2^{10}$, 3er Potenzen bis $3^4$, damit 4er bis $4^5$ und 5er Potenzen bis $5^4$).
 +<JS>miniAufgabe("#exologpot","#sollogpot",
 +[["$\\log_{4}\\left(\\frac{1}{1024}\\right)+\\log_{3}\\left(27\\right)+\\log_{4}\\left(\\frac{1}{64}\\right)$", "$-5+3+-3=-5$"], ["$\\log_{5}\\left(\\frac{1}{25}\\right)+\\log_{2}\\left(64\\right)+\\log_{2}\\left(\\frac{1}{1024}\\right)$", "$-2+6+-10=-6$"], ["$\\log_{2}\\left(\\frac{1}{64}\\right)+\\log_{2}\\left(512\\right)+\\log_{5}\\left(\\frac{1}{625}\\right)$", "$-6+9+-4=-1$"], ["$\\log_{4}\\left(256\\right)+\\log_{2}\\left(\\frac{1}{128}\\right)+\\log_{4}\\left(64\\right)$", "$4+-7+3=0$"], ["$\\log_{2}\\left(\\frac{1}{512}\\right)+\\log_{3}\\left(81\\right)+\\log_{2}\\left(\\frac{1}{256}\\right)$", "$-9+4+-8=-13$"], ["$\\log_{3}\\left(\\frac{1}{27}\\right)+\\log_{3}\\left(\\frac{1}{81}\\right)+\\log_{2}\\left(32\\right)$", "$-3+-4+5=-2$"], ["$\\log_{5}\\left(25\\right)+\\log_{5}\\left(625\\right)+\\log_{2}\\left(128\\right)$", "$2+4+7=13$"], ["$\\log_{2}\\left(\\frac{1}{32}\\right)+\\log_{4}\\left(\\frac{1}{256}\\right)+\\log_{2}\\left(256\\right)$", "$-5+-4+8=-1$"], ["$\\log_{5}\\left(\\frac{1}{125}\\right)+\\log_{5}\\left(125\\right)+\\log_{4}\\left(1024\\right)$", "$-3+3+5=5$"]],
 +" <br> ");
 +</JS>
 +<HTML>
 +<div id="exologpot"></div>
 +
 +</HTML>
 +<hidden Lösungen>
 +<HTML>
 +<div id="sollogpot"></div>
 +</HTML>
 +</hidden>