lehrkraefte:blc:miniaufgaben

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
lehrkraefte:blc:miniaufgaben [2026/02/16 15:42] Ivo Blöchligerlehrkraefte:blc:miniaufgaben [2026/02/16 15:48] (current) – [Montag 23. Februar 2026] Ivo Blöchliger
Line 17: Line 17:
  
 ==== Montag 23. Februar 2026 ==== ==== Montag 23. Februar 2026 ====
 +=== Aufgabe 1 ===
 Binomische Formeln anwenden, Resultat in Normalform<JS>miniAufgabe("#exobinomischeFormeln1","#solbinomischeFormeln1", Binomische Formeln anwenden, Resultat in Normalform<JS>miniAufgabe("#exobinomischeFormeln1","#solbinomischeFormeln1",
 [["a) $\\displaystyle \\left(6h^{2}n^{2}+5ah^{2}\\right)^2$ $\\quad$b) $\\displaystyle \\left(4hn^{3}-5hp^{2}\\right)^2$ $\\quad$c) $\\displaystyle \\left(3c^{2}d^{2}+5b^{2}d\\right)\\cdot \\left(3c^{2}d^{2}-5b^{2}d\\right)$ $\\quad$", "a) $\\displaystyle 36h^{4}n^{4}+60ah^{4}n^{2}+25a^{2}h^{4}$<br>\nb) $\\displaystyle 16h^{2}n^{6}-40h^{2}n^{3}p^{2}+25h^{2}p^{4}$<br>\nc) $\\displaystyle 9c^{4}d^{4}-25b^{4}d^{2}$<br>\n"], ["a) $\\displaystyle \\left(6c^{3}k+4c^{3}w\\right)^2$ $\\quad$b) $\\displaystyle \\left(5ch^{2}-2f^{2}h\\right)^2$ $\\quad$c) $\\displaystyle \\left(5a^{3}k^{2}+2kn\\right)\\cdot \\left(5a^{3}k^{2}-2kn\\right)$ $\\quad$", "a) $\\displaystyle 36c^{6}k^{2}+48c^{6}kw+16c^{6}w^{2}$<br>\nb) $\\displaystyle 25c^{2}h^{4}-20cf^{2}h^{3}+4f^{4}h^{2}$<br>\nc) $\\displaystyle 25a^{6}k^{4}-4k^{2}n^{2}$<br>\n"], ["a) $\\displaystyle \\left(4mx^{3}+7my\\right)^2$ $\\quad$b) $\\displaystyle \\left(5b^{3}n^{3}-7m^{2}n^{3}\\right)^2$ $\\quad$c) $\\displaystyle \\left(6b^{3}y^{3}+7bw\\right)\\cdot \\left(6b^{3}y^{3}-7bw\\right)$ $\\quad$", "a) $\\displaystyle 16m^{2}x^{6}+56m^{2}x^{3}y+49m^{2}y^{2}$<br>\nb) $\\displaystyle 25b^{6}n^{6}-70b^{3}m^{2}n^{6}+49m^{4}n^{6}$<br>\nc) $\\displaystyle 36b^{6}y^{6}-49b^{2}w^{2}$<br>\n"], ["a) $\\displaystyle \\left(2c^{3}x^{2}+6k^{2}x\\right)^2$ $\\quad$b) $\\displaystyle \\left(5a^{3}m^{3}-3c^{3}m^{2}\\right)^2$ $\\quad$c) $\\displaystyle \\left(6p^{3}y^{2}+5fy^{2}\\right)\\cdot \\left(6p^{3}y^{2}-5fy^{2}\\right)$ $\\quad$", "a) $\\displaystyle 4c^{6}x^{4}+24c^{3}k^{2}x^{3}+36k^{4}x^{2}$<br>\nb) $\\displaystyle 25a^{6}m^{6}-30a^{3}c^{3}m^{5}+9c^{6}m^{4}$<br>\nc) $\\displaystyle 36p^{6}y^{4}-25f^{2}y^{4}$<br>\n"], ["a) $\\displaystyle \\left(3d^{3}x^{2}+7px^{3}\\right)^2$ $\\quad$b) $\\displaystyle \\left(5c^{3}k^{2}-7cn^{3}\\right)^2$ $\\quad$c) $\\displaystyle \\left(4k^{3}p^{2}+7dk^{2}\\right)\\cdot \\left(4k^{3}p^{2}-7dk^{2}\\right)$ $\\quad$", "a) $\\displaystyle 9d^{6}x^{4}+42d^{3}px^{5}+49p^{2}x^{6}$<br>\nb) $\\displaystyle 25c^{6}k^{4}-70c^{4}k^{2}n^{3}+49c^{2}n^{6}$<br>\nc) $\\displaystyle 16k^{6}p^{4}-49d^{2}k^{4}$<br>\n"], ["a) $\\displaystyle \\left(2a^{3}f+6c^{3}f\\right)^2$ $\\quad$b) $\\displaystyle \\left(5a^{2}w^{2}-7ew^{2}\\right)^2$ $\\quad$c) $\\displaystyle \\left(4w^{2}x^{3}+7k^{2}w\\right)\\cdot \\left(4w^{2}x^{3}-7k^{2}w\\right)$ $\\quad$", "a) $\\displaystyle 4a^{6}f^{2}+24a^{3}c^{3}f^{2}+36c^{6}f^{2}$<br>\nb) $\\displaystyle 25a^{4}w^{4}-70a^{2}ew^{4}+49e^{2}w^{4}$<br>\nc) $\\displaystyle 16w^{4}x^{6}-49k^{4}w^{2}$<br>\n"], ["a) $\\displaystyle \\left(4m^{3}x^{2}+7ex^{3}\\right)^2$ $\\quad$b) $\\displaystyle \\left(3ex^{3}-7n^{2}x\\right)^2$ $\\quad$c) $\\displaystyle \\left(7c^{3}m^{3}+6am^{3}\\right)\\cdot \\left(7c^{3}m^{3}-6am^{3}\\right)$ $\\quad$", "a) $\\displaystyle 16m^{6}x^{4}+56em^{3}x^{5}+49e^{2}x^{6}$<br>\nb) $\\displaystyle 9e^{2}x^{6}-42en^{2}x^{4}+49n^{4}x^{2}$<br>\nc) $\\displaystyle 49c^{6}m^{6}-36a^{2}m^{6}$<br>\n"], ["a) $\\displaystyle \\left(3c^{2}d^{3}+5d^{3}m\\right)^2$ $\\quad$b) $\\displaystyle \\left(-3bh^{2}+2f^{2}h\\right)^2$ $\\quad$c) $\\displaystyle \\left(7a^{3}n^{2}+4a^{2}k^{2}\\right)\\cdot \\left(7a^{3}n^{2}-4a^{2}k^{2}\\right)$ $\\quad$", "a) $\\displaystyle 9c^{4}d^{6}+30c^{2}d^{6}m+25d^{6}m^{2}$<br>\nb) $\\displaystyle 9b^{2}h^{4}-12bf^{2}h^{3}+4f^{4}h^{2}$<br>\nc) $\\displaystyle 49a^{6}n^{4}-16a^{4}k^{4}$<br>\n"], ["a) $\\displaystyle \\left(2f^{3}m^{3}+6f^{2}x^{3}\\right)^2$ $\\quad$b) $\\displaystyle \\left(7h^{3}w-5wx^{3}\\right)^2$ $\\quad$c) $\\displaystyle \\left(3k^{2}m^{2}+6mp^{3}\\right)\\cdot \\left(-3k^{2}m^{2}+6mp^{3}\\right)$ $\\quad$", "a) $\\displaystyle 4f^{6}m^{6}+24f^{5}m^{3}x^{3}+36f^{4}x^{6}$<br>\nb) $\\displaystyle 49h^{6}w^{2}-70h^{3}w^{2}x^{3}+25w^{2}x^{6}$<br>\nc) $\\displaystyle -9k^{4}m^{4}+36m^{2}p^{6}$<br>\n"], ["a) $\\displaystyle \\left(3e^{2}f^{3}+7e^{2}m^{2}\\right)^2$ $\\quad$b) $\\displaystyle \\left(-5a^{2}e+7e^{2}n\\right)^2$ $\\quad$c) $\\displaystyle \\left(5h^{2}p^{3}+3fp^{3}\\right)\\cdot \\left(5h^{2}p^{3}-3fp^{3}\\right)$ $\\quad$", "a) $\\displaystyle 9e^{4}f^{6}+42e^{4}f^{3}m^{2}+49e^{4}m^{4}$<br>\nb) $\\displaystyle 25a^{4}e^{2}-70a^{2}e^{3}n+49e^{4}n^{2}$<br>\nc) $\\displaystyle 25h^{4}p^{6}-9f^{2}p^{6}$<br>\n"]], [["a) $\\displaystyle \\left(6h^{2}n^{2}+5ah^{2}\\right)^2$ $\\quad$b) $\\displaystyle \\left(4hn^{3}-5hp^{2}\\right)^2$ $\\quad$c) $\\displaystyle \\left(3c^{2}d^{2}+5b^{2}d\\right)\\cdot \\left(3c^{2}d^{2}-5b^{2}d\\right)$ $\\quad$", "a) $\\displaystyle 36h^{4}n^{4}+60ah^{4}n^{2}+25a^{2}h^{4}$<br>\nb) $\\displaystyle 16h^{2}n^{6}-40h^{2}n^{3}p^{2}+25h^{2}p^{4}$<br>\nc) $\\displaystyle 9c^{4}d^{4}-25b^{4}d^{2}$<br>\n"], ["a) $\\displaystyle \\left(6c^{3}k+4c^{3}w\\right)^2$ $\\quad$b) $\\displaystyle \\left(5ch^{2}-2f^{2}h\\right)^2$ $\\quad$c) $\\displaystyle \\left(5a^{3}k^{2}+2kn\\right)\\cdot \\left(5a^{3}k^{2}-2kn\\right)$ $\\quad$", "a) $\\displaystyle 36c^{6}k^{2}+48c^{6}kw+16c^{6}w^{2}$<br>\nb) $\\displaystyle 25c^{2}h^{4}-20cf^{2}h^{3}+4f^{4}h^{2}$<br>\nc) $\\displaystyle 25a^{6}k^{4}-4k^{2}n^{2}$<br>\n"], ["a) $\\displaystyle \\left(4mx^{3}+7my\\right)^2$ $\\quad$b) $\\displaystyle \\left(5b^{3}n^{3}-7m^{2}n^{3}\\right)^2$ $\\quad$c) $\\displaystyle \\left(6b^{3}y^{3}+7bw\\right)\\cdot \\left(6b^{3}y^{3}-7bw\\right)$ $\\quad$", "a) $\\displaystyle 16m^{2}x^{6}+56m^{2}x^{3}y+49m^{2}y^{2}$<br>\nb) $\\displaystyle 25b^{6}n^{6}-70b^{3}m^{2}n^{6}+49m^{4}n^{6}$<br>\nc) $\\displaystyle 36b^{6}y^{6}-49b^{2}w^{2}$<br>\n"], ["a) $\\displaystyle \\left(2c^{3}x^{2}+6k^{2}x\\right)^2$ $\\quad$b) $\\displaystyle \\left(5a^{3}m^{3}-3c^{3}m^{2}\\right)^2$ $\\quad$c) $\\displaystyle \\left(6p^{3}y^{2}+5fy^{2}\\right)\\cdot \\left(6p^{3}y^{2}-5fy^{2}\\right)$ $\\quad$", "a) $\\displaystyle 4c^{6}x^{4}+24c^{3}k^{2}x^{3}+36k^{4}x^{2}$<br>\nb) $\\displaystyle 25a^{6}m^{6}-30a^{3}c^{3}m^{5}+9c^{6}m^{4}$<br>\nc) $\\displaystyle 36p^{6}y^{4}-25f^{2}y^{4}$<br>\n"], ["a) $\\displaystyle \\left(3d^{3}x^{2}+7px^{3}\\right)^2$ $\\quad$b) $\\displaystyle \\left(5c^{3}k^{2}-7cn^{3}\\right)^2$ $\\quad$c) $\\displaystyle \\left(4k^{3}p^{2}+7dk^{2}\\right)\\cdot \\left(4k^{3}p^{2}-7dk^{2}\\right)$ $\\quad$", "a) $\\displaystyle 9d^{6}x^{4}+42d^{3}px^{5}+49p^{2}x^{6}$<br>\nb) $\\displaystyle 25c^{6}k^{4}-70c^{4}k^{2}n^{3}+49c^{2}n^{6}$<br>\nc) $\\displaystyle 16k^{6}p^{4}-49d^{2}k^{4}$<br>\n"], ["a) $\\displaystyle \\left(2a^{3}f+6c^{3}f\\right)^2$ $\\quad$b) $\\displaystyle \\left(5a^{2}w^{2}-7ew^{2}\\right)^2$ $\\quad$c) $\\displaystyle \\left(4w^{2}x^{3}+7k^{2}w\\right)\\cdot \\left(4w^{2}x^{3}-7k^{2}w\\right)$ $\\quad$", "a) $\\displaystyle 4a^{6}f^{2}+24a^{3}c^{3}f^{2}+36c^{6}f^{2}$<br>\nb) $\\displaystyle 25a^{4}w^{4}-70a^{2}ew^{4}+49e^{2}w^{4}$<br>\nc) $\\displaystyle 16w^{4}x^{6}-49k^{4}w^{2}$<br>\n"], ["a) $\\displaystyle \\left(4m^{3}x^{2}+7ex^{3}\\right)^2$ $\\quad$b) $\\displaystyle \\left(3ex^{3}-7n^{2}x\\right)^2$ $\\quad$c) $\\displaystyle \\left(7c^{3}m^{3}+6am^{3}\\right)\\cdot \\left(7c^{3}m^{3}-6am^{3}\\right)$ $\\quad$", "a) $\\displaystyle 16m^{6}x^{4}+56em^{3}x^{5}+49e^{2}x^{6}$<br>\nb) $\\displaystyle 9e^{2}x^{6}-42en^{2}x^{4}+49n^{4}x^{2}$<br>\nc) $\\displaystyle 49c^{6}m^{6}-36a^{2}m^{6}$<br>\n"], ["a) $\\displaystyle \\left(3c^{2}d^{3}+5d^{3}m\\right)^2$ $\\quad$b) $\\displaystyle \\left(-3bh^{2}+2f^{2}h\\right)^2$ $\\quad$c) $\\displaystyle \\left(7a^{3}n^{2}+4a^{2}k^{2}\\right)\\cdot \\left(7a^{3}n^{2}-4a^{2}k^{2}\\right)$ $\\quad$", "a) $\\displaystyle 9c^{4}d^{6}+30c^{2}d^{6}m+25d^{6}m^{2}$<br>\nb) $\\displaystyle 9b^{2}h^{4}-12bf^{2}h^{3}+4f^{4}h^{2}$<br>\nc) $\\displaystyle 49a^{6}n^{4}-16a^{4}k^{4}$<br>\n"], ["a) $\\displaystyle \\left(2f^{3}m^{3}+6f^{2}x^{3}\\right)^2$ $\\quad$b) $\\displaystyle \\left(7h^{3}w-5wx^{3}\\right)^2$ $\\quad$c) $\\displaystyle \\left(3k^{2}m^{2}+6mp^{3}\\right)\\cdot \\left(-3k^{2}m^{2}+6mp^{3}\\right)$ $\\quad$", "a) $\\displaystyle 4f^{6}m^{6}+24f^{5}m^{3}x^{3}+36f^{4}x^{6}$<br>\nb) $\\displaystyle 49h^{6}w^{2}-70h^{3}w^{2}x^{3}+25w^{2}x^{6}$<br>\nc) $\\displaystyle -9k^{4}m^{4}+36m^{2}p^{6}$<br>\n"], ["a) $\\displaystyle \\left(3e^{2}f^{3}+7e^{2}m^{2}\\right)^2$ $\\quad$b) $\\displaystyle \\left(-5a^{2}e+7e^{2}n\\right)^2$ $\\quad$c) $\\displaystyle \\left(5h^{2}p^{3}+3fp^{3}\\right)\\cdot \\left(5h^{2}p^{3}-3fp^{3}\\right)$ $\\quad$", "a) $\\displaystyle 9e^{4}f^{6}+42e^{4}f^{3}m^{2}+49e^{4}m^{4}$<br>\nb) $\\displaystyle 25a^{4}e^{2}-70a^{2}e^{3}n+49e^{4}n^{2}$<br>\nc) $\\displaystyle 25h^{4}p^{6}-9f^{2}p^{6}$<br>\n"]],
Line 33: Line 34:
  
 </hidden> </hidden>
 +
 +=== Aufgabe 2 ===
 +Kehren Sie die binomische Formeln um und schreiben Sie als Quadrat eines Binoms oder als Produkt zweier Binome.<JS>miniAufgabe("#exobinomischeFormelnUmkehren","#solbinomischeFormelnUmkehren",
 +[["a) $\\displaystyle 9a^{4}b^{2}+42a^{2}b^{2}e^{2}+49b^{2}e^{4}$ $\\quad$b) $\\displaystyle 16h^{6}k^{4}-56h^{5}k^{2}w+49h^{4}w^{2}$ $\\quad$c) $\\displaystyle 49d^{6}p^{4}-9m^{2}p^{2}$ $\\quad$", "a) $\\displaystyle \\left(3a^{2}b+7be^{2}\\right)^2$<br>\nb) $\\displaystyle \\left(4h^{3}k^{2}-7h^{2}w\\right)^2$<br>\nc) $\\displaystyle \\left(7d^{3}p^{2}+3mp\\right)\\cdot \\left(7d^{3}p^{2}-3mp\\right)$<br>\n"], ["a) $\\displaystyle 36e^{6}x^{4}+84e^{3}p^{2}x^{5}+49p^{4}x^{6}$ $\\quad$b) $\\displaystyle 4f^{6}w^{6}-28f^{6}h^{2}w^{3}+49f^{6}h^{4}$ $\\quad$c) $\\displaystyle 4a^{6}d^{4}-25c^{2}d^{2}$ $\\quad$", "a) $\\displaystyle \\left(6e^{3}x^{2}+7p^{2}x^{3}\\right)^2$<br>\nb) $\\displaystyle \\left(2f^{3}w^{3}-7f^{3}h^{2}\\right)^2$<br>\nc) $\\displaystyle \\left(2a^{3}d^{2}+5cd\\right)\\cdot \\left(2a^{3}d^{2}-5cd\\right)$<br>\n"], ["a) $\\displaystyle 36b^{4}f^{6}+84b^{2}f^{6}p^{2}+49f^{6}p^{4}$ $\\quad$b) $\\displaystyle 9d^{6}n^{6}-24bd^{3}n^{6}+16b^{2}n^{6}$ $\\quad$c) $\\displaystyle 49c^{6}h^{4}-9h^{2}n^{2}$ $\\quad$", "a) $\\displaystyle \\left(6b^{2}f^{3}+7f^{3}p^{2}\\right)^2$<br>\nb) $\\displaystyle \\left(3d^{3}n^{3}-4bn^{3}\\right)^2$<br>\nc) $\\displaystyle \\left(7c^{3}h^{2}+3hn\\right)\\cdot \\left(7c^{3}h^{2}-3hn\\right)$<br>\n"], ["a) $\\displaystyle 4b^{4}p^{2}+20b^{2}cp^{2}+25c^{2}p^{2}$ $\\quad$b) $\\displaystyle 36e^{6}w^{4}-36e^{4}hw^{2}+9e^{2}h^{2}$ $\\quad$c) $\\displaystyle 36n^{6}p^{4}-4n^{6}w^{2}$ $\\quad$", "a) $\\displaystyle \\left(2b^{2}p+5cp\\right)^2$<br>\nb) $\\displaystyle \\left(6e^{3}w^{2}-3eh\\right)^2$<br>\nc) $\\displaystyle \\left(6n^{3}p^{2}+2n^{3}w\\right)\\cdot \\left(6n^{3}p^{2}-2n^{3}w\\right)$<br>\n"], ["a) $\\displaystyle 36e^{2}p^{4}+36ep^{3}w+9p^{2}w^{2}$ $\\quad$b) $\\displaystyle 36d^{2}e^{6}-84b^{2}de^{4}+49b^{4}e^{2}$ $\\quad$c) $\\displaystyle 49h^{6}w^{4}-9h^{4}n^{2}$ $\\quad$", "a) $\\displaystyle \\left(6ep^{2}+3pw\\right)^2$<br>\nb) $\\displaystyle \\left(6de^{3}-7b^{2}e\\right)^2$<br>\nc) $\\displaystyle \\left(7h^{3}w^{2}+3h^{2}n\\right)\\cdot \\left(7h^{3}w^{2}-3h^{2}n\\right)$<br>\n"], ["a) $\\displaystyle 25h^{6}y^{6}+30fh^{3}y^{4}+9f^{2}y^{2}$ $\\quad$b) $\\displaystyle 49h^{6}x^{4}-70e^{3}h^{3}x^{3}+25e^{6}x^{2}$ $\\quad$c) $\\displaystyle 4a^{6}p^{4}-36n^{2}p^{4}$ $\\quad$", "a) $\\displaystyle \\left(5h^{3}y^{3}+3fy\\right)^2$<br>\nb) $\\displaystyle \\left(7h^{3}x^{2}-5e^{3}x\\right)^2$<br>\nc) $\\displaystyle \\left(2a^{3}p^{2}+6np^{2}\\right)\\cdot \\left(2a^{3}p^{2}-6np^{2}\\right)$<br>\n"], ["a) $\\displaystyle 16d^{6}x^{6}+16b^{3}d^{3}x^{5}+4b^{6}x^{4}$ $\\quad$b) $\\displaystyle 25d^{4}e^{6}-40d^{2}e^{5}f^{3}+16e^{4}f^{6}$ $\\quad$c) $\\displaystyle 36k^{6}p^{6}-25c^{4}p^{4}$ $\\quad$", "a) $\\displaystyle \\left(4d^{3}x^{3}+2b^{3}x^{2}\\right)^2$<br>\nb) $\\displaystyle \\left(5d^{2}e^{3}-4e^{2}f^{3}\\right)^2$<br>\nc) $\\displaystyle \\left(6k^{3}p^{3}+5c^{2}p^{2}\\right)\\cdot \\left(6k^{3}p^{3}-5c^{2}p^{2}\\right)$<br>\n"], ["a) $\\displaystyle 16a^{2}k^{2}+56aek^{2}+49e^{2}k^{2}$ $\\quad$b) $\\displaystyle 4f^{4}n^{2}-20f^{3}h^{2}n+25f^{2}h^{4}$ $\\quad$c) $\\displaystyle 25d^{4}x^{2}-36d^{2}y^{2}$ $\\quad$", "a) $\\displaystyle \\left(4ak+7ek\\right)^2$<br>\nb) $\\displaystyle \\left(2f^{2}n-5fh^{2}\\right)^2$<br>\nc) $\\displaystyle \\left(5d^{2}x+6dy\\right)\\cdot \\left(5d^{2}x-6dy\\right)$<br>\n"], ["a) $\\displaystyle 16d^{4}f^{6}+40d^{2}f^{6}k+25f^{6}k^{2}$ $\\quad$b) $\\displaystyle 9h^{6}x^{6}-12f^{2}h^{3}x^{4}+4f^{4}x^{2}$ $\\quad$c) $\\displaystyle 4d^{2}p^{6}-25h^{2}p^{4}$ $\\quad$", "a) $\\displaystyle \\left(4d^{2}f^{3}+5f^{3}k\\right)^2$<br>\nb) $\\displaystyle \\left(3h^{3}x^{3}-2f^{2}x\\right)^2$<br>\nc) $\\displaystyle \\left(2dp^{3}+5hp^{2}\\right)\\cdot \\left(2dp^{3}-5hp^{2}\\right)$<br>\n"], ["a) $\\displaystyle 4e^{6}x^{6}+28e^{3}f^{2}x^{4}+49f^{4}x^{2}$ $\\quad$b) $\\displaystyle 25f^{6}p^{2}-30f^{3}np^{3}+9n^{2}p^{4}$ $\\quad$c) $\\displaystyle -36d^{4}h^{2}+16h^{4}y^{2}$ $\\quad$", "a) $\\displaystyle \\left(2e^{3}x^{3}+7f^{2}x\\right)^2$<br>\nb) $\\displaystyle \\left(5f^{3}p-3np^{2}\\right)^2$<br>\nc) $\\displaystyle \\left(6d^{2}h+4h^{2}y\\right)\\cdot \\left(-6d^{2}h+4h^{2}y\\right)$<br>\n"]],
 +" <hr> ", " <hr> ");
 +</JS>
 +<HTML>
 +<div id="exobinomischeFormelnUmkehren"></div>
 +
 +</HTML>
 +<hidden Lösungen>
 +
 +<HTML>
 +<div id="solbinomischeFormelnUmkehren"></div>
 +<div style='font-size:12px;color:gray;'>ruby ausmultiplizieren2.rb 5</div>
 +</HTML>
 +
 +</hidden>
 +
  
 ==== Aufgaben vom aktuellen Jahr ==== ==== Aufgaben vom aktuellen Jahr ====
  • lehrkraefte/blc/miniaufgaben.txt
  • Last modified: 2026/02/16 15:48
  • by Ivo Blöchliger